Nisyros Island (Greece) is affected by widespread gas emissions from fumarolic fields located at the bottom of hydrothermal craters in the southern part of its caldera. This morphology and the current low gas fluxes make Nisyros an ideal site for testing the limits of physics-based gas dispersal models in confined and low-emission conditions. Here, we focused our attention on the local scale volcanic gas dispersion from the Stephanos hydrothermal crater. In April 2023, a 1-week survey was carried out to measure weather data, CO2 and H2S gas fluxes, air concentrations from portable gas stations, and chemical composition of fumarolic gases and to acquire thermal images of the crater floor. These data were used as inputs and boundary conditions for numerical simulations using a DISGAS-2.6.0 model in order to quantify the present-day volcanic degassing and its associated uncertainties, accounting for the meteorological variability. Model results are provided in terms of H2S probabilistic exceedance and persistence maps, showing gas concentrations within the crater that fall below the thresholds indicated for the occurrence of serious respiratory problems. Since DISGAS-2.6.0 does not account for chemical reactions, this study represents a good opportunity to discuss the methodological limits of simulating the dispersion of H2S which is challenging due to its rapid degradation and dilution in the atmosphere. In this regard, we also provided an empirical law of the H2S depletion in low-emission conditions that takes into account the uncertainties related to the field measurements.
Quantification of volcanic degassing and analysis of uncertainties using numerical modeling: the case of Stephanos crater (Nisyros Island, Greece)
Massaro, Silvia;Stocchi, Manuel;Dioguardi, Fabio;
2024-01-01
Abstract
Nisyros Island (Greece) is affected by widespread gas emissions from fumarolic fields located at the bottom of hydrothermal craters in the southern part of its caldera. This morphology and the current low gas fluxes make Nisyros an ideal site for testing the limits of physics-based gas dispersal models in confined and low-emission conditions. Here, we focused our attention on the local scale volcanic gas dispersion from the Stephanos hydrothermal crater. In April 2023, a 1-week survey was carried out to measure weather data, CO2 and H2S gas fluxes, air concentrations from portable gas stations, and chemical composition of fumarolic gases and to acquire thermal images of the crater floor. These data were used as inputs and boundary conditions for numerical simulations using a DISGAS-2.6.0 model in order to quantify the present-day volcanic degassing and its associated uncertainties, accounting for the meteorological variability. Model results are provided in terms of H2S probabilistic exceedance and persistence maps, showing gas concentrations within the crater that fall below the thresholds indicated for the occurrence of serious respiratory problems. Since DISGAS-2.6.0 does not account for chemical reactions, this study represents a good opportunity to discuss the methodological limits of simulating the dispersion of H2S which is challenging due to its rapid degradation and dilution in the atmosphere. In this regard, we also provided an empirical law of the H2S depletion in low-emission conditions that takes into account the uncertainties related to the field measurements.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.