The mitochondrial permeability transition is a key event in cell death. Intense research efforts have been focused on elucidating the molecular components of the mitochondrial permeability transition pore (mPTP) to improve the understanding and treatment of various pathologies, including neurodegenerative disorders, cancer and cardiac diseases. Several molecular factors have been proposed as core components of the mPTP; however, further investigation has indicated that these factors are among a wide range of regulators. Thus, the scientific community lacks a clear model of the mPTP. Here, we review the molecular factors involved in the regulation and formation of the mPTP. Furthermore, we propose that the mitochondrial ATP synthase, specifically its c subunit, is the central core component of the mPTP complex. Moreover, we discuss the involvement of the mPTP in ischemia and reperfusion as well as the results of clinical studies targeting the mPTP to ameliorate ischemia-reperfusion injury.
Molecular identity of the mitochondrial permeability transition pore and its role in ischemia-reperfusion injury
MORCIANO, Giampaolo;
2015-01-01
Abstract
The mitochondrial permeability transition is a key event in cell death. Intense research efforts have been focused on elucidating the molecular components of the mitochondrial permeability transition pore (mPTP) to improve the understanding and treatment of various pathologies, including neurodegenerative disorders, cancer and cardiac diseases. Several molecular factors have been proposed as core components of the mPTP; however, further investigation has indicated that these factors are among a wide range of regulators. Thus, the scientific community lacks a clear model of the mPTP. Here, we review the molecular factors involved in the regulation and formation of the mPTP. Furthermore, we propose that the mitochondrial ATP synthase, specifically its c subunit, is the central core component of the mPTP complex. Moreover, we discuss the involvement of the mPTP in ischemia and reperfusion as well as the results of clinical studies targeting the mPTP to ameliorate ischemia-reperfusion injury.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.