We prove a global residual formula in terms of logarithmic indices for one-dimensional holomorphic foliations, with isolated singularities, and logarithmic along normal crossings divisors. We also give a formula for the total sum of the logarithmic indices if the singular set of the foliation is contained in the invariant divisor. As an application, we provide a formula for the number of singularities in the complement of the invariant divisor on complex projective spaces. Finally, we obtain a Poincaré-Hopf type formula for singular normal projective varieties.

Global residue formula for logarithmic indices of one-dimensional foliations

Barros Correa Junior Mauricio
;
2024-01-01

Abstract

We prove a global residual formula in terms of logarithmic indices for one-dimensional holomorphic foliations, with isolated singularities, and logarithmic along normal crossings divisors. We also give a formula for the total sum of the logarithmic indices if the singular set of the foliation is contained in the invariant divisor. As an application, we provide a formula for the number of singularities in the complement of the invariant divisor on complex projective spaces. Finally, we obtain a Poincaré-Hopf type formula for singular normal projective varieties.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/519117
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact