Learning tasks are often based on penalized optimization problems in which a sparse solution is desired. This can lead to more interpretative results by identifying a smaller subset of important features or components and reducing the dimensionality of the data representation, as well. In this study, we propose a new method to solve a constrained Frobenius norm-based nonnegative low-rank approximation, and the tuning of the associated penalty hyperparameter, simultaneously. The penalty term added is a particular diversity measure that is more effective for sparseness purposes than other classical norm-based penalties (i.e., $l_1$ or $l_{2,1}$ norms). As it is well known, setting the hyperparameters of an algorithm is not an easy task. Our work drew on developing an optimization method and the corresponding algorithm that simultaneously solves the sparsity-constrained nonnegative approximation problem and optimizes its associated penalty hyperparameters. We test the proposed method by numerical experiments and show its promising results on several synthetic and real datasets.
Penalty hyperparameter optimization with diversity measure for nonnegative low-rank approximation
Nicoletta Del Buono;Flavia EspositoMembro del Collaboration Group
;Laura Selicato;
2024-01-01
Abstract
Learning tasks are often based on penalized optimization problems in which a sparse solution is desired. This can lead to more interpretative results by identifying a smaller subset of important features or components and reducing the dimensionality of the data representation, as well. In this study, we propose a new method to solve a constrained Frobenius norm-based nonnegative low-rank approximation, and the tuning of the associated penalty hyperparameter, simultaneously. The penalty term added is a particular diversity measure that is more effective for sparseness purposes than other classical norm-based penalties (i.e., $l_1$ or $l_{2,1}$ norms). As it is well known, setting the hyperparameters of an algorithm is not an easy task. Our work drew on developing an optimization method and the corresponding algorithm that simultaneously solves the sparsity-constrained nonnegative approximation problem and optimizes its associated penalty hyperparameters. We test the proposed method by numerical experiments and show its promising results on several synthetic and real datasets.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.