Abstract. In the paper we consider the following quasilinear Schro ̈dinger–Poisson system in the whole space R3 􏰀−ε2∆u+(V +φ)u=u|u|p−1 −∆φ − β∆4φ = u2, where1<5,β>0,V :R3 →]0,∞[,andlookforsolutionsu,φ:R3 →Rinthe semiclassical regime, namely when ε → 0. By means of the Lyapunov–Schmidt method we estimate the number of solutions by the cup-length of the critical manifold of the external potential V .

Existence and concentration of semiclassical bound states for a quasilinear Schrödinger-Poisson system

Gaetano Siciliano
;
2024-01-01

Abstract

Abstract. In the paper we consider the following quasilinear Schro ̈dinger–Poisson system in the whole space R3 􏰀−ε2∆u+(V +φ)u=u|u|p−1 −∆φ − β∆4φ = u2, where1<5,β>0,V :R3 →]0,∞[,andlookforsolutionsu,φ:R3 →Rinthe semiclassical regime, namely when ε → 0. By means of the Lyapunov–Schmidt method we estimate the number of solutions by the cup-length of the critical manifold of the external potential V .
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/514708
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact