Environmental matrices have been considered of paramount importance in the spread of antibiotic-resistance; however, the role of drinking waters is still underexplored. Therefore, a scoping review was performed using a systematic approach based on PRISMA guidelines, with the aim of identifying and characterizing antibiotic-resistance in tap water, specifically, water treated at a potabilization plant and provided for drinking use through a water distribution system. The review included 45 studies, the majority of which were conducted in upper-middle-income economies (42.2%), mainly from the Western Pacific region (26.7%), followed by Europe (24.4%). Most of the papers focused on detecting antibiotic-resistant bacteria (ARB), either alone (37.8%) or in combination with antibiotic-resistant genes (ARGs) (26.7%). Multidrug-resistance profile was often identified in heterotrophic bacteria, including various species of nontuberculous mycobacteria, Pseudomonas spp., and Aeromonas spp., which were especially resistant to penicillins, cephalosporins (including 3rd-generation), and also to macrolides (erythromycin) and tetracyclines. Resistance to a wide range of antibiotics was also prevalent in fecal bacteria, e.g., the Enterobacteriaceae family, with common resistance to (fluoro)quinolones and sulfonamide groups. ARGs were investigated either in bacterial strains isolated from tap waters or directly in water samples, and the most frequently detected ARGs belonged to β-lactam, sulfonamide, and tetracycline types. Additionally, mobile genetic elements were found (i.e., int1 and tnpA). Sulfonamides and macrolides were the most frequently detected antibiotics across countries, although their concentrations were generally low (<10 ng/L) in Europe and the United States. From a health perspective, tap water hosted ARB of health concern based on the 2024 WHO bacterial priority pathogens list, mainly Enterobacteriaceae resistant to 3rd-generation cephalosporin and/or carbapenem. Despite the fact that tap water is treated to meet chemical and microbiological quality standards, current evidence suggests that it can harbor antibiotic-resistance determinants, thus supporting its potential role in environmental pathways contributing to antibiotic resistance.
A systematic scoping review of antibiotic-resistance in drinking tap water
De Giglio, Osvalda;Bagordo, Francesco;Diella, Giusy;Montagna, Maria Teresa;
2024-01-01
Abstract
Environmental matrices have been considered of paramount importance in the spread of antibiotic-resistance; however, the role of drinking waters is still underexplored. Therefore, a scoping review was performed using a systematic approach based on PRISMA guidelines, with the aim of identifying and characterizing antibiotic-resistance in tap water, specifically, water treated at a potabilization plant and provided for drinking use through a water distribution system. The review included 45 studies, the majority of which were conducted in upper-middle-income economies (42.2%), mainly from the Western Pacific region (26.7%), followed by Europe (24.4%). Most of the papers focused on detecting antibiotic-resistant bacteria (ARB), either alone (37.8%) or in combination with antibiotic-resistant genes (ARGs) (26.7%). Multidrug-resistance profile was often identified in heterotrophic bacteria, including various species of nontuberculous mycobacteria, Pseudomonas spp., and Aeromonas spp., which were especially resistant to penicillins, cephalosporins (including 3rd-generation), and also to macrolides (erythromycin) and tetracyclines. Resistance to a wide range of antibiotics was also prevalent in fecal bacteria, e.g., the Enterobacteriaceae family, with common resistance to (fluoro)quinolones and sulfonamide groups. ARGs were investigated either in bacterial strains isolated from tap waters or directly in water samples, and the most frequently detected ARGs belonged to β-lactam, sulfonamide, and tetracycline types. Additionally, mobile genetic elements were found (i.e., int1 and tnpA). Sulfonamides and macrolides were the most frequently detected antibiotics across countries, although their concentrations were generally low (<10 ng/L) in Europe and the United States. From a health perspective, tap water hosted ARB of health concern based on the 2024 WHO bacterial priority pathogens list, mainly Enterobacteriaceae resistant to 3rd-generation cephalosporin and/or carbapenem. Despite the fact that tap water is treated to meet chemical and microbiological quality standards, current evidence suggests that it can harbor antibiotic-resistance determinants, thus supporting its potential role in environmental pathways contributing to antibiotic resistance.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.