In this paper we study Moser–Trudinger type inequalities for some nonlocal energy functionals in presence of a logarithmic convolution potential, when the domain is a ball. In particular, we perform a blow-up analysis to prove existence of extremal functions in the borderline case of critical growth. Using this, we sharpen the results in [S. Cingolani and T. Weth J. London Math. Soc. 105 (2022) 1897–1935] under critical growth assumptions and gives answers to some questions left open in [S. Cingolani and T. Weth J. London Math. Soc. 105 (2022) 1897–1935].

Extremal functions for the critical Trudinger-Moser inequality with logarithmic Kernels

Silvia Cingolani
;
2024-01-01

Abstract

In this paper we study Moser–Trudinger type inequalities for some nonlocal energy functionals in presence of a logarithmic convolution potential, when the domain is a ball. In particular, we perform a blow-up analysis to prove existence of extremal functions in the borderline case of critical growth. Using this, we sharpen the results in [S. Cingolani and T. Weth J. London Math. Soc. 105 (2022) 1897–1935] under critical growth assumptions and gives answers to some questions left open in [S. Cingolani and T. Weth J. London Math. Soc. 105 (2022) 1897–1935].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/508161
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact