Introduction: The almond tree is a major global nut crop, and its production has surged dramatically in recent years. Super high-density (SHD) planting systems, designed to optimize resource efficiency and enhance precocity, have gained prominence in almond cultivation. A shift in cropping systems toward sustainable intensification (SI) pathways is imperative, and so maximizing branching density within the canopies of SHD trees is crucial to establish and maintain productive potential, especially for hedge-pruned trees. This study investigates the influence of different almond cultivars grafted onto a novel growth-controlling rootstock on tree architectural and growth parameters in a SHD orchard. This open field research provided valuable insights for the development and application of new tools and methods to increase productivity and sustainability in almond growing. Methods: Three cultivars (Lauranne® Avijour, Guara Tuono, and Filippo Cea) were evaluated in Gravina in Puglia (BA) over a two-year period. Canopy growth parameters, such as canopy volume and trunk cross-sectional area, and architectural traits, like branching density, branching angle, number and length of subterminal shoots, and number of brachyblasts, were measured through qualitative and quantitative measurements. Results and discussion: Results revealed significant differences in tree height, canopy thickness, width, volume, and vigor among the cultivars. Architectural traits, including branch parameters, brachyblast parameters, and subterminal shoots, varied among the cultivars. Lauranne displayed a more compact well-distributed canopy and exhibited the lowest vigor. Filippo Cea showed the highest vigor and the greatest canopy volume. Tuono had a higher number of buds and bud density. The best ideotype for SHD orchards is a smaller tree, with high branching density and smaller trunk diameters, i.e. the vigor. Cv. Lauranne seemed to be the best cultivar, mostly with the lowest tree vigor of all the cultivars involved. These findings provide valuable insights for almond growers and breeders seeking to optimize orchard design and management for enhanced SHD orchards productivity and sustainability. Future research will explore the relationship between canopy architecture and yield parameters, considering different scion/rootstock combinations in different environmental conditions.
Architectural approach to evaluate the design and management of almond cultivars suitable for super high-density orchards
Maldera F.Writing – Original Draft Preparation
;Garofalo S. P.
Writing – Review & Editing
;Camposeo S.Supervision
2024-01-01
Abstract
Introduction: The almond tree is a major global nut crop, and its production has surged dramatically in recent years. Super high-density (SHD) planting systems, designed to optimize resource efficiency and enhance precocity, have gained prominence in almond cultivation. A shift in cropping systems toward sustainable intensification (SI) pathways is imperative, and so maximizing branching density within the canopies of SHD trees is crucial to establish and maintain productive potential, especially for hedge-pruned trees. This study investigates the influence of different almond cultivars grafted onto a novel growth-controlling rootstock on tree architectural and growth parameters in a SHD orchard. This open field research provided valuable insights for the development and application of new tools and methods to increase productivity and sustainability in almond growing. Methods: Three cultivars (Lauranne® Avijour, Guara Tuono, and Filippo Cea) were evaluated in Gravina in Puglia (BA) over a two-year period. Canopy growth parameters, such as canopy volume and trunk cross-sectional area, and architectural traits, like branching density, branching angle, number and length of subterminal shoots, and number of brachyblasts, were measured through qualitative and quantitative measurements. Results and discussion: Results revealed significant differences in tree height, canopy thickness, width, volume, and vigor among the cultivars. Architectural traits, including branch parameters, brachyblast parameters, and subterminal shoots, varied among the cultivars. Lauranne displayed a more compact well-distributed canopy and exhibited the lowest vigor. Filippo Cea showed the highest vigor and the greatest canopy volume. Tuono had a higher number of buds and bud density. The best ideotype for SHD orchards is a smaller tree, with high branching density and smaller trunk diameters, i.e. the vigor. Cv. Lauranne seemed to be the best cultivar, mostly with the lowest tree vigor of all the cultivars involved. These findings provide valuable insights for almond growers and breeders seeking to optimize orchard design and management for enhanced SHD orchards productivity and sustainability. Future research will explore the relationship between canopy architecture and yield parameters, considering different scion/rootstock combinations in different environmental conditions.File | Dimensione | Formato | |
---|---|---|---|
fpls-15-1407862.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
2.04 MB
Formato
Adobe PDF
|
2.04 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.