The trifluoromethyl group (CF3) is a key functionality in pharmaceutical and agrochemical development, greatly enhancing the efficacy and properties of resulting compounds. However, attaching the CF3 group to heteroatoms such as sulfur, oxygen, and nitrogen poses challenges because of the lack of general synthetic methods and reliance on bespoke reagents. Here, we present a modular flow platform that streamlines the synthesis of heteroatom-CF3 motifs. Our method uses readily available organic precursors in combination with cesium fluoride as the primary fluorine source, facilitating the rapid generation of N-trifluoromethyl(R) [NCF3(R)], SCF3 (trifluoromethylthio), and OCF3 (trifluoromethoxy) anions on demand without reliance on perfluoroalkyl precursor reagents. This strategy offers a more environmentally friendly synthesis of trifluoromethyl(heteroatom)–containing molecules, with the potential for scalability in manufacturing processes facilitated by flow technology.

A unified flow strategy for the preparation and use of trifluoromethyl-heteroatom anions

Mauro Spennacchio
Membro del Collaboration Group
;
Marco Colella
Membro del Collaboration Group
;
2024-01-01

Abstract

The trifluoromethyl group (CF3) is a key functionality in pharmaceutical and agrochemical development, greatly enhancing the efficacy and properties of resulting compounds. However, attaching the CF3 group to heteroatoms such as sulfur, oxygen, and nitrogen poses challenges because of the lack of general synthetic methods and reliance on bespoke reagents. Here, we present a modular flow platform that streamlines the synthesis of heteroatom-CF3 motifs. Our method uses readily available organic precursors in combination with cesium fluoride as the primary fluorine source, facilitating the rapid generation of N-trifluoromethyl(R) [NCF3(R)], SCF3 (trifluoromethylthio), and OCF3 (trifluoromethoxy) anions on demand without reliance on perfluoroalkyl precursor reagents. This strategy offers a more environmentally friendly synthesis of trifluoromethyl(heteroatom)–containing molecules, with the potential for scalability in manufacturing processes facilitated by flow technology.
File in questo prodotto:
File Dimensione Formato  
science.adq2954.pdf

non disponibili

Descrizione: Science2024
Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 785.28 kB
Formato Adobe PDF
785.28 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Science_Accepted Version.pdf

accesso aperto

Descrizione: Versione Accettata
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 426.8 kB
Formato Adobe PDF
426.8 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/504840
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact