The aim of this paper is investigating the existence of one or more critical points of a family of functionals which generalizes the model problem \[\bar J(u) = \int_\Omega \bar A(x,u)|\nabla u|^p dx - \int_\Omega G(x,u) dx\] in the Banach space $W^{1,p}_0(\Omega)\cap L^\infty(\Omega)$, being $\Omega$ a bounded domain in $\R^N$. In order to use ``classical'' theorems, a suitable variant of condition $(C)$ is proved and $W^{1,p}_0(\Omega)$ is decomposed according to a ``good'' sequence of finite dimensional subspaces.

Infinitely many solutions of some nonlinear variational equations

CANDELA, Anna Maria;
2009-01-01

Abstract

The aim of this paper is investigating the existence of one or more critical points of a family of functionals which generalizes the model problem \[\bar J(u) = \int_\Omega \bar A(x,u)|\nabla u|^p dx - \int_\Omega G(x,u) dx\] in the Banach space $W^{1,p}_0(\Omega)\cap L^\infty(\Omega)$, being $\Omega$ a bounded domain in $\R^N$. In order to use ``classical'' theorems, a suitable variant of condition $(C)$ is proved and $W^{1,p}_0(\Omega)$ is decomposed according to a ``good'' sequence of finite dimensional subspaces.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/50351
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 41
social impact