We employ tools from complex analysis to construct the *-logarithm of a quaternionic slice regular function. Our approach enables us to achieve three main objectives: we compute the monodromy associated with the *-exponential; we establish sufficient conditions for the *-product of two *-exponentials to also be a *-exponential; we calculate the slice derivative of the *-exponential of a regular function.

The *-Exponential as a Covering Map

Amedeo Altavilla
;
2025-01-01

Abstract

We employ tools from complex analysis to construct the *-logarithm of a quaternionic slice regular function. Our approach enables us to achieve three main objectives: we compute the monodromy associated with the *-exponential; we establish sufficient conditions for the *-product of two *-exponentials to also be a *-exponential; we calculate the slice derivative of the *-exponential of a regular function.
File in questo prodotto:
File Dimensione Formato  
s40315-024-00558-z.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 435.42 kB
Formato Adobe PDF
435.42 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/501560
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact