We employ tools from complex analysis to construct the *-logarithm of a quaternionic slice regular function. Our approach enables us to achieve three main objectives: we compute the monodromy associated with the *-exponential; we establish sufficient conditions for the *-product of two *-exponentials to also be a *-exponential; we calculate the slice derivative of the *-exponential of a regular function.
The *-Exponential as a Covering Map
Amedeo Altavilla
;
2025-01-01
Abstract
We employ tools from complex analysis to construct the *-logarithm of a quaternionic slice regular function. Our approach enables us to achieve three main objectives: we compute the monodromy associated with the *-exponential; we establish sufficient conditions for the *-product of two *-exponentials to also be a *-exponential; we calculate the slice derivative of the *-exponential of a regular function.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
s40315-024-00558-z.pdf
accesso aperto
Descrizione: Articolo
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
435.42 kB
Formato
Adobe PDF
|
435.42 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


