A measurement is presented of the primary Lund jet plane (LJP) density in inclusive jet production in proton-proton collisions. The analysis uses 138 fb−1 of data collected by the CMS experiment at = 13 TeV. The LJP, a representation of the phase space of emissions inside jets, is constructed using iterative jet declustering. The transverse momentum kT and the splitting angle ∆R of an emission relative to its emitter are measured at each step of the jet declustering process. The average density of emissions as function of ln(kT/GeV) and ln(R/∆R) is measured for jets with distance parameters R = 0.4 or 0.8, transverse momentum pT > 700 GeV, and rapidity |y| < 1.7. The jet substructure is measured using the charged-particle tracks of the jet. The measured distributions, unfolded to the level of stable charged particles, are compared with theoretical predictions from simulations and with perturbative quantum chromodynamics calculations. Due to the ability of the LJP to factorize physical effects, these measurements can be used to improve different aspects of the physics modeling in event generators.

Measurement of the primary Lund jet plane density in proton-proton collisions at $$ \sqrt{\textrm{s}} $$ = 13 TeV

Abbrescia, M.;Colaleo, A.;De Palma, M.;My, S.;Pompili, A.;Radogna, R.;Venditti, R.;
2024-01-01

Abstract

A measurement is presented of the primary Lund jet plane (LJP) density in inclusive jet production in proton-proton collisions. The analysis uses 138 fb−1 of data collected by the CMS experiment at = 13 TeV. The LJP, a representation of the phase space of emissions inside jets, is constructed using iterative jet declustering. The transverse momentum kT and the splitting angle ∆R of an emission relative to its emitter are measured at each step of the jet declustering process. The average density of emissions as function of ln(kT/GeV) and ln(R/∆R) is measured for jets with distance parameters R = 0.4 or 0.8, transverse momentum pT > 700 GeV, and rapidity |y| < 1.7. The jet substructure is measured using the charged-particle tracks of the jet. The measured distributions, unfolded to the level of stable charged particles, are compared with theoretical predictions from simulations and with perturbative quantum chromodynamics calculations. Due to the ability of the LJP to factorize physical effects, these measurements can be used to improve different aspects of the physics modeling in event generators.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/499268
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact