In the present paper, we quantize the monotone (as well as anti– monotone) Poisson central limit theorem. One constructs a sequence of monotone independent binomial random variables in terms of the creation– annihilation operators on a specific interacting Fock space. By using these random variables, one sets up a quantization of the monotone Poisson central limit theorem with respect to the convergence both in mixed–moments and in law, which includes the monotone Laplace–de Moivre CLT as a part. Moreover, one represents the above limit in terms of creation–annihilation operators on the continuous monotone Fock space over L2([0, 1]).

Quantization of the Monotone Poisson Central Limit Theorem

Yungang Lu
2022-01-01

Abstract

In the present paper, we quantize the monotone (as well as anti– monotone) Poisson central limit theorem. One constructs a sequence of monotone independent binomial random variables in terms of the creation– annihilation operators on a specific interacting Fock space. By using these random variables, one sets up a quantization of the monotone Poisson central limit theorem with respect to the convergence both in mixed–moments and in law, which includes the monotone Laplace–de Moivre CLT as a part. Moreover, one represents the above limit in terms of creation–annihilation operators on the continuous monotone Fock space over L2([0, 1]).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/490020
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact