An analytic proof is given which shows that it is impossible to extend any triple of mutually unbiased (MU) product bases in dimension six by a single MU vector. Furthermore, the 16 states obtained by removing two orthogonal states from any MU product triple cannot figure in a (hypothetical) complete set of seven MU bases. These results follow from exploiting the structure of MU product bases in a novel fashion, and they are among the strongest ones obtained for MU bases in dimension six without recourse to computer algebra.
ON THE IMPOSSIBILITY TO EXTEND TRIPLES OF MUTUALLY UNBIASED PRODUCT BASES IN DIMENSION SIX
MC NULTY, DANIEL;
2012-01-01
Abstract
An analytic proof is given which shows that it is impossible to extend any triple of mutually unbiased (MU) product bases in dimension six by a single MU vector. Furthermore, the 16 states obtained by removing two orthogonal states from any MU product triple cannot figure in a (hypothetical) complete set of seven MU bases. These results follow from exploiting the structure of MU product bases in a novel fashion, and they are among the strongest ones obtained for MU bases in dimension six without recourse to computer algebra.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


