We report quantum enhancement of Faraday rotation spin noise spectroscopy by polarization squeezing of the probe beam. Using natural abundance Rb in 100 Torr of N2 buffer gas and squeezed light from a subthreshold optical parametric oscillator stabilized 20 GHz to the blue of the D1 resonance, we observe that an input squeezing of 3.0 dB improves the signal-to-noise ratio by 1.5 to 2.6 dB over the combined (power) (number density) ranges (0.5-4.0 mW) (1.5×1012cm-3 to 1.3×1013 cm-3), covering the ranges used in optimized spin noise spectroscopy experiments. We also show that squeezing improves the tradeoff between statistical sensitivity and broadening effects, a previously unobserved quantum advantage.
Squeezed-light spin noise spectroscopy
Lucivero V. G.;
2016-01-01
Abstract
We report quantum enhancement of Faraday rotation spin noise spectroscopy by polarization squeezing of the probe beam. Using natural abundance Rb in 100 Torr of N2 buffer gas and squeezed light from a subthreshold optical parametric oscillator stabilized 20 GHz to the blue of the D1 resonance, we observe that an input squeezing of 3.0 dB improves the signal-to-noise ratio by 1.5 to 2.6 dB over the combined (power) (number density) ranges (0.5-4.0 mW) (1.5×1012cm-3 to 1.3×1013 cm-3), covering the ranges used in optimized spin noise spectroscopy experiments. We also show that squeezing improves the tradeoff between statistical sensitivity and broadening effects, a previously unobserved quantum advantage.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.