SARS-CoV-2 pathogenesis has been recently extended to human central nervous system (CNS), in addition to nasopharyngeal truck, eye, lung and gut. The recent literature highlights that some SARS-CoV-2 spike glycoprotein regions homologous to neurotoxin-like peptides might bind to human nicotinic Acetyl-Choline Receptors (nAChRs). Spike-nAChR interaction can probably cause dysregulation of CNS and cholinergic anti-inflammatory pathways and uncontrolled im-mune-response, both associated to a severe COVID-19 pathophysiology. Herein, we hypothesize that inside the Open Reading Frame (ORF) region of spike glycoprotein, the RNA polymerase can translate small neurotoxic peptides by means of a “jumping mechanism” already demonstrated in other coronaviruses. These small peptides can bind the snAChRs instead of Spike glycoproteins. A striking homology occurred between these small peptides observed by sequence retrieval and pro-teins alignment. Acting as nAChRs antagonists, these small peptides (conotoxins) could be the ex-planation for the extrapulmonary clinical manifestations (neurological, hemorrhagic and thrombot-ic expressions, the prolonged apnea, the cardiocirculatory collapse, the heart arrhythmias, the ven-tricular tachycardia, the body temperature alteration, the electrolyte K+ imbalance and finally the significant reduction of butyryl cholinesterase (BuChE) plasma levels, as observed in COVID-19 patients. Several factors might induce the expression of these small peptides, including microbiota. The main hypothesis regarding the presence of these small peptides opens a new scenario on the eti-ology of COVID-19 clinical symptoms observed so far, including the neurological manifestations.
Could Small Neurotoxins-Peptides be Expressed during SARS-CoV-2 Infection?
Palmirotta R.
2021-01-01
Abstract
SARS-CoV-2 pathogenesis has been recently extended to human central nervous system (CNS), in addition to nasopharyngeal truck, eye, lung and gut. The recent literature highlights that some SARS-CoV-2 spike glycoprotein regions homologous to neurotoxin-like peptides might bind to human nicotinic Acetyl-Choline Receptors (nAChRs). Spike-nAChR interaction can probably cause dysregulation of CNS and cholinergic anti-inflammatory pathways and uncontrolled im-mune-response, both associated to a severe COVID-19 pathophysiology. Herein, we hypothesize that inside the Open Reading Frame (ORF) region of spike glycoprotein, the RNA polymerase can translate small neurotoxic peptides by means of a “jumping mechanism” already demonstrated in other coronaviruses. These small peptides can bind the snAChRs instead of Spike glycoproteins. A striking homology occurred between these small peptides observed by sequence retrieval and pro-teins alignment. Acting as nAChRs antagonists, these small peptides (conotoxins) could be the ex-planation for the extrapulmonary clinical manifestations (neurological, hemorrhagic and thrombot-ic expressions, the prolonged apnea, the cardiocirculatory collapse, the heart arrhythmias, the ven-tricular tachycardia, the body temperature alteration, the electrolyte K+ imbalance and finally the significant reduction of butyryl cholinesterase (BuChE) plasma levels, as observed in COVID-19 patients. Several factors might induce the expression of these small peptides, including microbiota. The main hypothesis regarding the presence of these small peptides opens a new scenario on the eti-ology of COVID-19 clinical symptoms observed so far, including the neurological manifestations.File | Dimensione | Formato | |
---|---|---|---|
156) Covid CONOTOXIN.pdf
accesso aperto
Descrizione: Article
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
3.13 MB
Formato
Adobe PDF
|
3.13 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.