Estimation of expectation values of incompatible observables is an essential practical task in quantum computing, especially for approximating energies of chemical and other many-body quantum systems. In this Letter, we introduce a method for this purpose based on performing a single joint measurement that can be implemented locally and whose marginals yield noisy (unsharp) versions of the target set of noncommuting Pauli observables. We derive bounds on the number of experimental repetitions required to estimate energies up to a certain precision. We compare this strategy to the classical shadow formalism and show that our method yields the same performance as the locally biased classical shadow protocol. We also highlight some general connections between the two approaches by showing that classical shadows can be used to construct joint measurements and vice versa. Finally, we adapt the joint measurement strategy to minimise the sample complexity when the implementation of measurements is assumed noisy. This can provide significant efficiency improvements compared to known generalizations of classical shadows to noisy scenarios.

Estimating Quantum Hamiltonians via Joint Measurements of Noisy Noncommuting Observables

Daniel Mc Nulty;
2023-01-01

Abstract

Estimation of expectation values of incompatible observables is an essential practical task in quantum computing, especially for approximating energies of chemical and other many-body quantum systems. In this Letter, we introduce a method for this purpose based on performing a single joint measurement that can be implemented locally and whose marginals yield noisy (unsharp) versions of the target set of noncommuting Pauli observables. We derive bounds on the number of experimental repetitions required to estimate energies up to a certain precision. We compare this strategy to the classical shadow formalism and show that our method yields the same performance as the locally biased classical shadow protocol. We also highlight some general connections between the two approaches by showing that classical shadows can be used to construct joint measurements and vice versa. Finally, we adapt the joint measurement strategy to minimise the sample complexity when the implementation of measurements is assumed noisy. This can provide significant efficiency improvements compared to known generalizations of classical shadows to noisy scenarios.
File in questo prodotto:
File Dimensione Formato  
2206.08912v2.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 653.45 kB
Formato Adobe PDF
653.45 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/485080
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact