The so-called quantum Cheshire cat is a phenomenon in which an object, identified with a "cat", is dissociated from a property of the object, identified with the "grin" of the cat. We propose a thought experiment, similar to this phenomenon, with an interferometric setup, where a property (a component of polarization) of an object (photon) can be separated from the object itself and can simultaneously be amplified when it is already decoupled from its object. We further show that this setup can be used to dissociate two complementary properties, e.g., two orthogonal components of polarization of a photon and identified with the grin and the snarl of a cat, from each other and one of them can be amplified while being detached from the other. Moreover, we extend the work to a noisy scenario, effected by a spin-orbit-coupling-like additional interaction term in the Hamiltonian for the measurement process, with the object in this scenario being identified with a so-called confused Cheshire cat. We devise a gedanken experiment in which such a "confusion" can be successfully dissociated from the system, and we find that the dissociation helps in the amplification of signals.

Isolating noise and amplifying the signal using weak quantum measurement and postselection

Das, Debmalya;
2023-01-01

Abstract

The so-called quantum Cheshire cat is a phenomenon in which an object, identified with a "cat", is dissociated from a property of the object, identified with the "grin" of the cat. We propose a thought experiment, similar to this phenomenon, with an interferometric setup, where a property (a component of polarization) of an object (photon) can be separated from the object itself and can simultaneously be amplified when it is already decoupled from its object. We further show that this setup can be used to dissociate two complementary properties, e.g., two orthogonal components of polarization of a photon and identified with the grin and the snarl of a cat, from each other and one of them can be amplified while being detached from the other. Moreover, we extend the work to a noisy scenario, effected by a spin-orbit-coupling-like additional interaction term in the Hamiltonian for the measurement process, with the object in this scenario being identified with a so-called confused Cheshire cat. We devise a gedanken experiment in which such a "confusion" can be successfully dissociated from the system, and we find that the dissociation helps in the amplification of signals.
File in questo prodotto:
File Dimensione Formato  
12.PhysRevA.107.052214.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: Copyright dell'editore
Dimensione 692.29 kB
Formato Adobe PDF
692.29 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2203.00254v2.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 488.72 kB
Formato Adobe PDF
488.72 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/484900
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact