Aims: Right ventricular systolic dysfunction (RVSD) is an important determinant of outcomes in heart failure (HF) cohorts. While the quantitative assessment of RV function is challenging using 2D-echocardiography, cardiac magnetic resonance (CMR) is the gold standard with its high spatial resolution and precise anatomical definition. We sought to investigate the prognostic value of CMR-derived RV systolic function in a large cohort of HF with reduced ejection fraction (HFrEF). Methods and results: Study cohort comprised of patients enrolled in the CarDiac MagnEtic Resonance for Primary Prevention Implantable CardioVerter DefibrillAtor ThErapy registry who had HFrEF and had simultaneous baseline CMR and echocardiography (n = 2449). RVSD was defined as RV ejection fraction (RVEF) <45%. Kaplan-Meier curves and cox regression were used to investigate the association between RVSD and all-cause mortality (ACM). Mean age was 59.8 ± 14.0 years, 42.0% were female, and mean left ventricular ejection fraction (LVEF) was 34.0 ± 10.8. Median follow-up was 959 days (interquartile range: 560-1590). RVSD was present in 936 (38.2%) and was an independent predictor of ACM (adjusted hazard ratio = 1.44; 95% CI [1.09-1.91]; P = 0.01). On subgroup analyses, the prognostic value of RVSD was more pronounced in NYHA I/II than in NYHA III/IV, in LVEF <35% than in LVEF ≥35%, and in patients with renal dysfunction when compared to those with normal renal function. Conclusion: RV systolic dysfunction is an independent predictor of ACM in HFrEF, with a more pronounced prognostic value in select subgroups, likely reflecting the importance of RVSD in the early stages of HF progression.
Cardiac magnetic resonance for prophylactic implantable-cardioverter defibrillator therapy international study: prognostic value of cardiac magnetic resonance-derived right ventricular parameters substudy
Memeo R.;Guaricci A. I.;
2023-01-01
Abstract
Aims: Right ventricular systolic dysfunction (RVSD) is an important determinant of outcomes in heart failure (HF) cohorts. While the quantitative assessment of RV function is challenging using 2D-echocardiography, cardiac magnetic resonance (CMR) is the gold standard with its high spatial resolution and precise anatomical definition. We sought to investigate the prognostic value of CMR-derived RV systolic function in a large cohort of HF with reduced ejection fraction (HFrEF). Methods and results: Study cohort comprised of patients enrolled in the CarDiac MagnEtic Resonance for Primary Prevention Implantable CardioVerter DefibrillAtor ThErapy registry who had HFrEF and had simultaneous baseline CMR and echocardiography (n = 2449). RVSD was defined as RV ejection fraction (RVEF) <45%. Kaplan-Meier curves and cox regression were used to investigate the association between RVSD and all-cause mortality (ACM). Mean age was 59.8 ± 14.0 years, 42.0% were female, and mean left ventricular ejection fraction (LVEF) was 34.0 ± 10.8. Median follow-up was 959 days (interquartile range: 560-1590). RVSD was present in 936 (38.2%) and was an independent predictor of ACM (adjusted hazard ratio = 1.44; 95% CI [1.09-1.91]; P = 0.01). On subgroup analyses, the prognostic value of RVSD was more pronounced in NYHA I/II than in NYHA III/IV, in LVEF <35% than in LVEF ≥35%, and in patients with renal dysfunction when compared to those with normal renal function. Conclusion: RV systolic dysfunction is an independent predictor of ACM in HFrEF, with a more pronounced prognostic value in select subgroups, likely reflecting the importance of RVSD in the early stages of HF progression.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.