Leishmaniasis is a vector-borne disease caused by many Leishmania spp. which infect humans and other mammalian hosts. Leishmania infantum is the main agent of canine leishmaniasis (CanL) whose diagnosis is usually confirmed by serological and molecular tests. This study aimed to evaluate the clinical and analytical sensitivities of a lab-on-chip (LOC) real-time PCR applied on the portable Q3-Plus V2 platform (Q3 qPCR) in the detection of L. infantum. The Q3 qPCR performance was assessed by comparing the quantification cycle (Cq) values with those obtained using the qPCR run on a CFX96 Real-Time System (CFX96 qPCR). A total of 173 DNA samples (extracted from bone marrow, lymph node, blood, buffy coat, conjunctival swab, and skin) as well as 93 non-extracted samples (NES) (bone marrow, lymph node, blood, and buffy coat) collected from dogs were tested with both systems. Serial dilutions of each representative DNA and NES sample were used to assess the analytical sensitivity of the Q3 qPCR system. Overlapping Cq values were obtained with the Q3 qPCR and CFX96 qPCR, both using DNA extracted from L. infantum promastigotes (limit of detection, <1 promastigote per milliliter) and from biological samples as well as with NES. However, the Q3 qPCR system showed a higher sensitivity in detecting L. infantum in NES as compared with the CFX96 qPCR. Our data indicate that the Q3 qPCR system could be a reliable tool for detecting L. infantum DNA in biological samples, bypassing the DNA extraction step, which represents an advance in the point-of-care diagnostic of CanL.

Q3 lab-on-chip real-time PCR for the diagnosis of Leishmania infantum infection in dogs

Latrofa, Maria Stefania;Louzada-Flores, Viviane Noll;Dantas-Torres, Filipe;Otranto, Domenico
2024-01-01

Abstract

Leishmaniasis is a vector-borne disease caused by many Leishmania spp. which infect humans and other mammalian hosts. Leishmania infantum is the main agent of canine leishmaniasis (CanL) whose diagnosis is usually confirmed by serological and molecular tests. This study aimed to evaluate the clinical and analytical sensitivities of a lab-on-chip (LOC) real-time PCR applied on the portable Q3-Plus V2 platform (Q3 qPCR) in the detection of L. infantum. The Q3 qPCR performance was assessed by comparing the quantification cycle (Cq) values with those obtained using the qPCR run on a CFX96 Real-Time System (CFX96 qPCR). A total of 173 DNA samples (extracted from bone marrow, lymph node, blood, buffy coat, conjunctival swab, and skin) as well as 93 non-extracted samples (NES) (bone marrow, lymph node, blood, and buffy coat) collected from dogs were tested with both systems. Serial dilutions of each representative DNA and NES sample were used to assess the analytical sensitivity of the Q3 qPCR system. Overlapping Cq values were obtained with the Q3 qPCR and CFX96 qPCR, both using DNA extracted from L. infantum promastigotes (limit of detection, <1 promastigote per milliliter) and from biological samples as well as with NES. However, the Q3 qPCR system showed a higher sensitivity in detecting L. infantum in NES as compared with the CFX96 qPCR. Our data indicate that the Q3 qPCR system could be a reliable tool for detecting L. infantum DNA in biological samples, bypassing the DNA extraction step, which represents an advance in the point-of-care diagnostic of CanL.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/483780
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact