: The arterial switch operation (ASO) has become the standard surgical treatment for patients with d-transposition of the great arteries. While ASO has significantly improved survival rates, a subset of patients develop a unique anatomical anomaly known as the gothic aortic arch (GAA). Understanding cardiac mechanics in this population is crucial, as altered mechanics can have profound consequences for cardiac function and exercise capacity. The GAA has been associated with changes in ventricular function, hemodynamics, and exercise capacity. Studies have shown a correlation between the GAA and decreased ascending aorta distensibility, loss of systolic wave amplitude across the aortic arch, and adverse cardiovascular outcomes. Various imaging techniques, including echocardiography, cardiac magnetic resonance imaging, and cardiac computed tomography, play a crucial role in assessing cardiac mechanics and evaluating the GAA anomaly. Despite significant advancements, gaps in knowledge regarding the prognostic implications and underlying mechanisms of the GAA anomaly remain. This review aims to explore the implications of the GAA anomaly on cardiac mechanics and its impact on clinical outcomes in young patients after ASO. Advancements in imaging techniques, such as computational modeling, offer promising avenues to enhance our understanding of cardiac mechanics and improve clinical management.
Unveiling the gothic aortic arch and cardiac mechanics: insights from young patients after arterial switch operation for d-transposition of the great arteries
Padalino M.;
2023-01-01
Abstract
: The arterial switch operation (ASO) has become the standard surgical treatment for patients with d-transposition of the great arteries. While ASO has significantly improved survival rates, a subset of patients develop a unique anatomical anomaly known as the gothic aortic arch (GAA). Understanding cardiac mechanics in this population is crucial, as altered mechanics can have profound consequences for cardiac function and exercise capacity. The GAA has been associated with changes in ventricular function, hemodynamics, and exercise capacity. Studies have shown a correlation between the GAA and decreased ascending aorta distensibility, loss of systolic wave amplitude across the aortic arch, and adverse cardiovascular outcomes. Various imaging techniques, including echocardiography, cardiac magnetic resonance imaging, and cardiac computed tomography, play a crucial role in assessing cardiac mechanics and evaluating the GAA anomaly. Despite significant advancements, gaps in knowledge regarding the prognostic implications and underlying mechanisms of the GAA anomaly remain. This review aims to explore the implications of the GAA anomaly on cardiac mechanics and its impact on clinical outcomes in young patients after ASO. Advancements in imaging techniques, such as computational modeling, offer promising avenues to enhance our understanding of cardiac mechanics and improve clinical management.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.