Preterm infants are at risk of hypoxia and hyperoxia because of the immaturity of their respiratory and antioxidant systems, linked to increased morbidity and mortality. This study aimed to evaluate the efficacy of a single administration of the SLAB51 probiotic formula in improving oxygenation in respiratory distress syndrome (RDS)-affected premature babies, thus reducing their need for oxygen administration. Additionally, the capability of SLAB51 in activating the factor-erythroid 2-related factor (Nrf2) responsible for antioxidant responses was evaluated in vitro. In two groups of oxygen-treated preterm infants with similar SaO2 values, SLAB51 or a placebo was given. After two hours, the SLAB51-treated group showed a significant increase in SaO2 levels and the SaO2/FiO2 ratio, while the control group showed no changes. Significantly increased Nrf2 activation was observed in intestinal epithelial cells (IECs) exposed to SLAB51 lysates. In preterm infants, we confirmed the previously observed SLAB51’s “oxygen-sparing effect”, permitting an improvement in SaO2 levels. We also provided evidence of SLAB51’s potential to enhance antioxidant responses, thus counteracting the detrimental effects of hyperoxia. Although further studies are needed to support our data, SLAB51 represents a promising approach to managing preterm infants requiring oxygen supplementation.
SLAB51 Multi-Strain Probiotic Formula Increases Oxygenation in Oxygen-Treated Preterm Infants
Maria Elisabetta Baldassarre;Marta Pensa;Maria Teresa Loverro;Francesca Lombardi;Federico Schettini;Nicola Laforgia
2023-01-01
Abstract
Preterm infants are at risk of hypoxia and hyperoxia because of the immaturity of their respiratory and antioxidant systems, linked to increased morbidity and mortality. This study aimed to evaluate the efficacy of a single administration of the SLAB51 probiotic formula in improving oxygenation in respiratory distress syndrome (RDS)-affected premature babies, thus reducing their need for oxygen administration. Additionally, the capability of SLAB51 in activating the factor-erythroid 2-related factor (Nrf2) responsible for antioxidant responses was evaluated in vitro. In two groups of oxygen-treated preterm infants with similar SaO2 values, SLAB51 or a placebo was given. After two hours, the SLAB51-treated group showed a significant increase in SaO2 levels and the SaO2/FiO2 ratio, while the control group showed no changes. Significantly increased Nrf2 activation was observed in intestinal epithelial cells (IECs) exposed to SLAB51 lysates. In preterm infants, we confirmed the previously observed SLAB51’s “oxygen-sparing effect”, permitting an improvement in SaO2 levels. We also provided evidence of SLAB51’s potential to enhance antioxidant responses, thus counteracting the detrimental effects of hyperoxia. Although further studies are needed to support our data, SLAB51 represents a promising approach to managing preterm infants requiring oxygen supplementation.File | Dimensione | Formato | |
---|---|---|---|
Nutrients_2023_Baldassarre et al.pdf
accesso aperto
Descrizione: Article
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
797.07 kB
Formato
Adobe PDF
|
797.07 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.