We consider a shallow water equation of Camassa-Holm type, which contains nonlinear dispersive effects as well as fourth order dissipative effects. We prove that as the diffusion and dispersion parameters tend to zero, with a condition on the relative balance between these two parameters, smooth solutions of the shallow water equation converge to discontinuous weak solutions of a scalar conservation law. The proof relies on deriving suitable a priori estimates together with an application of the compensated compactness method in the $L^p$ setting.

A singular limit problem for conservation laws related to the Camassa-Holm shallow water equation

COCLITE, Giuseppe Maria;
2006-01-01

Abstract

We consider a shallow water equation of Camassa-Holm type, which contains nonlinear dispersive effects as well as fourth order dissipative effects. We prove that as the diffusion and dispersion parameters tend to zero, with a condition on the relative balance between these two parameters, smooth solutions of the shallow water equation converge to discontinuous weak solutions of a scalar conservation law. The proof relies on deriving suitable a priori estimates together with an application of the compensated compactness method in the $L^p$ setting.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/48082
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact