Herein, we report an ultrasensitive and highly selective analytical methods to detect 2,4-dichlorophenoxyacetic acid (2,4-D) using an o-phenylenediamine based molecularly imprinted polymer (o-PD-MIP) sensor. Electrochemical Quartz Crystal Microbalance (EQCM) is used to investigate both the kinetics and the mass of the electropolymerized o-phenylenediamine. Additionally, successful removal of the template from the imprinted cavities is confirmed by comparing the XP spectra of imprinted and o-PD-MIPs after various template removal procedures. The most effective method involves a 70:30 mixture of MeOH:H2O for 15 min under stirring. The o-PD-MIP sensor exhibits high sensitivity with a LoD of (3 ± 1) × 10−12 M, which is below the EU regulation limits for drinking water by six orders of magnitude, a linear range between 10 and 100pM, and an excellent selectivity. These results proved the effectiveness of template removal procedure by using a 70:30 MeOH:H2O mixture and are a proof-of-concept for ultrasensitive and selective 2,4-D detection in real samples.

Ultrasensitive and Highly Selective o-Phenylenediamine Molecularly Imprinted Polymer for the Detection of 2,4-Dichlorophenoxyacetic Acid

Tricase A.;Macchia E.;Ditaranto N.
Formal Analysis
;
Torsi L.;Bollella P.
2024-01-01

Abstract

Herein, we report an ultrasensitive and highly selective analytical methods to detect 2,4-dichlorophenoxyacetic acid (2,4-D) using an o-phenylenediamine based molecularly imprinted polymer (o-PD-MIP) sensor. Electrochemical Quartz Crystal Microbalance (EQCM) is used to investigate both the kinetics and the mass of the electropolymerized o-phenylenediamine. Additionally, successful removal of the template from the imprinted cavities is confirmed by comparing the XP spectra of imprinted and o-PD-MIPs after various template removal procedures. The most effective method involves a 70:30 mixture of MeOH:H2O for 15 min under stirring. The o-PD-MIP sensor exhibits high sensitivity with a LoD of (3 ± 1) × 10−12 M, which is below the EU regulation limits for drinking water by six orders of magnitude, a linear range between 10 and 100pM, and an excellent selectivity. These results proved the effectiveness of template removal procedure by using a 70:30 MeOH:H2O mixture and are a proof-of-concept for ultrasensitive and selective 2,4-D detection in real samples.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/479481
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact