Large language models (LLMs) like GPT-4 and Claude are catalyzing transformation across medical research including rheumatology. This review examines their applications, highlighting the pivotal role of prompt engineering in effectively guiding LLMs. Key aspects explored include literature synthesis, data analysis, manuscript drafting, coding assistance, privacy considerations, and generative artificial intelligence integrations. While LLMs accelerate workflows, reliance without apt prompting jeopardizes accuracy. By methodically constructing prompts and gauging model outputs, researchers can maximize relevance and utility. Locally run open-source models also offer data privacy protections. As LLMs permeate rheumatology research, developing expertise in strategic prompting and assessing model limitations is critical. With proper oversight, LLMs markedly boost scholarly productivity.

Prompt engineering: The next big skill in rheumatology research

Venerito V.;Iannone F.;
2024-01-01

Abstract

Large language models (LLMs) like GPT-4 and Claude are catalyzing transformation across medical research including rheumatology. This review examines their applications, highlighting the pivotal role of prompt engineering in effectively guiding LLMs. Key aspects explored include literature synthesis, data analysis, manuscript drafting, coding assistance, privacy considerations, and generative artificial intelligence integrations. While LLMs accelerate workflows, reliance without apt prompting jeopardizes accuracy. By methodically constructing prompts and gauging model outputs, researchers can maximize relevance and utility. Locally run open-source models also offer data privacy protections. As LLMs permeate rheumatology research, developing expertise in strategic prompting and assessing model limitations is critical. With proper oversight, LLMs markedly boost scholarly productivity.
File in questo prodotto:
File Dimensione Formato  
Prompt engineering- The next big skill .pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.7 MB
Formato Adobe PDF
1.7 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/479186
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact