We report the fabrication of alkali-metal vapor cells using femtosecond laser machining. This laser-written vapor-cell (LWVC) technology allows arbitrarily-shaped 3D interior volumes and has potential for integration with photonic structures and optical components. We use non-evaporable getters both to dispense rubidium and to absorb buffer gas. This enables us to produce cells with sub-atmospheric buffer gas pressures without vacuum apparatus. We demonstrate sub-Doppler saturated absorption spectroscopy and single beam optical magnetometry with a single LWVC. The LWVC technology may find application in miniaturized atomic quantum sensors and frequency references.
Laser-written vapor cells for chip-scale atomic sensing and spectroscopy
Lucivero V. G.;
2022-01-01
Abstract
We report the fabrication of alkali-metal vapor cells using femtosecond laser machining. This laser-written vapor-cell (LWVC) technology allows arbitrarily-shaped 3D interior volumes and has potential for integration with photonic structures and optical components. We use non-evaporable getters both to dispense rubidium and to absorb buffer gas. This enables us to produce cells with sub-atmospheric buffer gas pressures without vacuum apparatus. We demonstrate sub-Doppler saturated absorption spectroscopy and single beam optical magnetometry with a single LWVC. The LWVC technology may find application in miniaturized atomic quantum sensors and frequency references.File | Dimensione | Formato | |
---|---|---|---|
(3)OptExpress-30-15-27149.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright dell'editore
Dimensione
8.19 MB
Formato
Adobe PDF
|
8.19 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.