We present a method of optical magnetometry with parts-per-billion resolution that is able to detect biomagnetic signals generated from the human brain and heart in Earth's ambient environment. Our magnetically silent sensors measure the total magnetic field by detecting the free-precession frequency in a highly spin-polarized alkali-metal vapor. A first-order gradiometer is formed from two magnetometers that are separated by a 3-cm baseline. Our gradiometer operates from a laptop consuming 5 W over a USB port, enabled by state-of-the-art microfabricated alkali-vapor cells, advanced thermal insulation, custom electronics, and compact lasers within the sensor head. The gradiometer has a sensitivity of 16 fT/cm/Hz1/2 outdoors, which we use to detect neuronal electrical currents and magnetic cardiography signals. Recording of neuronal magnetic fields is one of a few available methods for noninvasive functional brain imaging that usually requires extensive magnetic shielding and other infrastructure. This work demonstrates the possibility of a dense array of portable biomagnetic sensors that are deployable in a variety of natural environments.

Portable Magnetometry for Detection of Biomagnetism in Ambient Environments

Lucivero V. G.;
2020-01-01

Abstract

We present a method of optical magnetometry with parts-per-billion resolution that is able to detect biomagnetic signals generated from the human brain and heart in Earth's ambient environment. Our magnetically silent sensors measure the total magnetic field by detecting the free-precession frequency in a highly spin-polarized alkali-metal vapor. A first-order gradiometer is formed from two magnetometers that are separated by a 3-cm baseline. Our gradiometer operates from a laptop consuming 5 W over a USB port, enabled by state-of-the-art microfabricated alkali-vapor cells, advanced thermal insulation, custom electronics, and compact lasers within the sensor head. The gradiometer has a sensitivity of 16 fT/cm/Hz1/2 outdoors, which we use to detect neuronal electrical currents and magnetic cardiography signals. Recording of neuronal magnetic fields is one of a few available methods for noninvasive functional brain imaging that usually requires extensive magnetic shielding and other infrastructure. This work demonstrates the possibility of a dense array of portable biomagnetic sensors that are deployable in a variety of natural environments.
File in questo prodotto:
File Dimensione Formato  
(7)PhysRevApplied.14.011002.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.3 MB
Formato Adobe PDF
3.3 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2001.03534v2.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Copyright dell'editore
Dimensione 3.91 MB
Formato Adobe PDF
3.91 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/477482
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 153
  • ???jsp.display-item.citation.isi??? 135
social impact