During the COVID-19 pandemic, wastewater monitoring has been used to monitor the levels of SARS-CoV-2 RNA entering the sewerage system. In Italy, the Istituto Superiore di Sanita coordinated the SARI project (Sorveglianza Ambientale Reflue in Italia) to detect SARS-CoV-2 and its variants. In this study, the concentration of SARS-CoV-2 and its variants in raw wastewater against COVID-19 cases was evaluated together with the effect of temperature and precipitation on virus spread. We validated a predictive model, proposed by De Giglio et al., 2021, to establish the number of COVID-19 cases/100,000 inhabitants. A receiver operating characteristic curve model was applied to predict the number of COVID-19 cases and Poisson regression was applied to study the effect of temperature and rainfall on viral load. In Apulia, from October 2021 to December 2022, we analyzed 1041 samples, of which 985 (94.6%) tested positive for SARS-CoV-2. Median atmospheric temperature was inversely proportional to viral load in wastewater; no correlation was found with precipitation. The predictive model confirmed that at least 11 cases/100,000 inhabitants would occur in the 15 days following the detection of the virus in wastewater. Environmental surveillance of SARS-CoV-2 can be used to map the virus and its variants.

Wastewater-based Epidemiology and SARS-CoV-2: Variant Trends in the Apulia Region (Southern Italy) and Effect of Some Environmental Parameters

Triggiano, Francesco;De Giglio, Osvalda;Apollonio, Francesca;Fasano, Fabrizio;Ungaro, Nicola;Montagna, Maria Teresa
2023-01-01

Abstract

During the COVID-19 pandemic, wastewater monitoring has been used to monitor the levels of SARS-CoV-2 RNA entering the sewerage system. In Italy, the Istituto Superiore di Sanita coordinated the SARI project (Sorveglianza Ambientale Reflue in Italia) to detect SARS-CoV-2 and its variants. In this study, the concentration of SARS-CoV-2 and its variants in raw wastewater against COVID-19 cases was evaluated together with the effect of temperature and precipitation on virus spread. We validated a predictive model, proposed by De Giglio et al., 2021, to establish the number of COVID-19 cases/100,000 inhabitants. A receiver operating characteristic curve model was applied to predict the number of COVID-19 cases and Poisson regression was applied to study the effect of temperature and rainfall on viral load. In Apulia, from October 2021 to December 2022, we analyzed 1041 samples, of which 985 (94.6%) tested positive for SARS-CoV-2. Median atmospheric temperature was inversely proportional to viral load in wastewater; no correlation was found with precipitation. The predictive model confirmed that at least 11 cases/100,000 inhabitants would occur in the 15 days following the detection of the virus in wastewater. Environmental surveillance of SARS-CoV-2 can be used to map the virus and its variants.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/477180
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact