A measurement of the top quark pole mass m(t)(pole) in events where a top quarkantiquark pair (t (t) over bar) is produced in association with at least one additional jet ( t (t) over bar +jet) is presented. This analysis is performed using proton-proton collision data at root s = 13TeV collected by the CMS experiment at the CERN LHC, corresponding to a total integrated luminosity of 36.3 fb(-1). Events with two opposite-sign leptons in the final state (e(+) e(-), mu(+) mu(-), e(+/-) mu(-/+)) are analyzed. The reconstruction of the main observable and the event classification are optimized using multivariate analysis techniques based on machine learning. The production cross section is measured as a function of the inverse of the invariant mass of the t t +jet system at the parton level using a maximum likelihood unfolding. Given a reference parton distribution function (PDF), the top quark pole mass is extracted using the theoretical predictions at next-to-leading order. For the ABMP16NLO PDF, this results in m(t)(pole) = 172.93 +/- 1.36 GeV.
Measurement of the top quark pole mass using tt¯+jet events in the dilepton final state in proton-proton collisions at √s=13 TeV
Abbrescia, M.;Colaleo, A.;De Palma, M.;My, S.;Pompili, A.;Radogna, R.;Venditti, R.;
2023-01-01
Abstract
A measurement of the top quark pole mass m(t)(pole) in events where a top quarkantiquark pair (t (t) over bar) is produced in association with at least one additional jet ( t (t) over bar +jet) is presented. This analysis is performed using proton-proton collision data at root s = 13TeV collected by the CMS experiment at the CERN LHC, corresponding to a total integrated luminosity of 36.3 fb(-1). Events with two opposite-sign leptons in the final state (e(+) e(-), mu(+) mu(-), e(+/-) mu(-/+)) are analyzed. The reconstruction of the main observable and the event classification are optimized using multivariate analysis techniques based on machine learning. The production cross section is measured as a function of the inverse of the invariant mass of the t t +jet system at the parton level using a maximum likelihood unfolding. Given a reference parton distribution function (PDF), the top quark pole mass is extracted using the theoretical predictions at next-to-leading order. For the ABMP16NLO PDF, this results in m(t)(pole) = 172.93 +/- 1.36 GeV.File | Dimensione | Formato | |
---|---|---|---|
JHEP07(2023)077.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
2.04 MB
Formato
Adobe PDF
|
2.04 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.