We consider the weighted least squares spline approximation of a noisy dataset. By interpreting the weights as a probability distribution, we maximize the associated entropy subject to the constraint that the mean squared error is prescribed to a desired (small) value. Acting on this error yields a robust regression method that automatically detects and removes outliers from the data during the fitting procedure, by assigning them a very small weight. We discuss the use of both spline functions and spline curves. A number of numerical illustrations have been included to disclose the potentialities of the maximal-entropy approach in different application fields.

An entropy-based approach for a robust least squares spline approximation

Iavernaro F.
;
2024-01-01

Abstract

We consider the weighted least squares spline approximation of a noisy dataset. By interpreting the weights as a probability distribution, we maximize the associated entropy subject to the constraint that the mean squared error is prescribed to a desired (small) value. Acting on this error yields a robust regression method that automatically detects and removes outliers from the data during the fitting procedure, by assigning them a very small weight. We discuss the use of both spline functions and spline curves. A number of numerical illustrations have been included to disclose the potentialities of the maximal-entropy approach in different application fields.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/475261
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact