The position of the fetal head during engagement and progression in the birth canal is the primary cause of dystocic labor and arrest of progression, often due to malposition and malrotation. The authors performed an investigation on pregnant women in labor, who all underwent vaginal digital examination by obstetricians and midwives as well as intrapartum ultrasonography to collect four “geometric parameters”, measured in all the women. All parameters were measured using artificial intelligence and machine learning algorithms, called AIDA (artificial intelligence dystocia algorithm), which incorporates a human-in-the-loop approach, that is, to use AI (artificial intelligence) algorithms that prioritize the physician’s decision and explainable artificial intelligence (XAI). The AIDA was structured into five classes. After a number of “geometric parameters” were collected, the data obtained from the AIDA analysis were entered into a red, yellow, or green zone, linked to the analysis of the progress of labor. Using the AIDA analysis, we were able to identify five reference classes for patients in labor, each of which had a certain sort of birth outcome. A 100% cesarean birth prediction was made in two of these five classes. The use of artificial intelligence, through the evaluation of certain obstetric parameters in specific decision-making algorithms, allows physicians to systematically understand how the results of the algorithms can be explained. This approach can be useful in evaluating the progress of labor and predicting the labor outcome, including spontaneous, whether operative VD (vaginal delivery) should be attempted, or if ICD (intrapartum cesarean delivery) is preferable or necessary.

Artificial Intelligence, Intrapartum Ultrasound and Dystocic Delivery: AIDA (Artificial Intelligence Dystocia Algorithm), a Promising Helping Decision Support System

Cicinelli, Ettore;Vimercati, Antonella;D’Amato, Antonio;Dellino, Miriam;Trojano, Giuseppe;Difonzo, Tommaso;
2024-01-01

Abstract

The position of the fetal head during engagement and progression in the birth canal is the primary cause of dystocic labor and arrest of progression, often due to malposition and malrotation. The authors performed an investigation on pregnant women in labor, who all underwent vaginal digital examination by obstetricians and midwives as well as intrapartum ultrasonography to collect four “geometric parameters”, measured in all the women. All parameters were measured using artificial intelligence and machine learning algorithms, called AIDA (artificial intelligence dystocia algorithm), which incorporates a human-in-the-loop approach, that is, to use AI (artificial intelligence) algorithms that prioritize the physician’s decision and explainable artificial intelligence (XAI). The AIDA was structured into five classes. After a number of “geometric parameters” were collected, the data obtained from the AIDA analysis were entered into a red, yellow, or green zone, linked to the analysis of the progress of labor. Using the AIDA analysis, we were able to identify five reference classes for patients in labor, each of which had a certain sort of birth outcome. A 100% cesarean birth prediction was made in two of these five classes. The use of artificial intelligence, through the evaluation of certain obstetric parameters in specific decision-making algorithms, allows physicians to systematically understand how the results of the algorithms can be explained. This approach can be useful in evaluating the progress of labor and predicting the labor outcome, including spontaneous, whether operative VD (vaginal delivery) should be attempted, or if ICD (intrapartum cesarean delivery) is preferable or necessary.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/474321
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact