We study the existence and multiplicity of solutions for the Schrödinger-Bopp-Podolsky system (formula presented) where Ω is an open bounded and smooth domain in R3, a > 0 is the Bopp-Podolsky parameter. The unknowns are u, φ: Ω → R and ω ∈ R. By using variational methods we show that for any a > 0 there are infinitely many solutions with diverging energy and divergent in norm. We show that ground states solutions converge to a ground state solution of the related classical Schrödinger-Poisson system, as a → 0.

EXISTENCE AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO EIGENVALUE PROBLEMS FOR SCHRÖDINGER-BOPP-PODOLSKY EQUATIONS

Siciliano G.
2023-01-01

Abstract

We study the existence and multiplicity of solutions for the Schrödinger-Bopp-Podolsky system (formula presented) where Ω is an open bounded and smooth domain in R3, a > 0 is the Bopp-Podolsky parameter. The unknowns are u, φ: Ω → R and ω ∈ R. By using variational methods we show that for any a > 0 there are infinitely many solutions with diverging energy and divergent in norm. We show that ground states solutions converge to a ground state solution of the related classical Schrödinger-Poisson system, as a → 0.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/474272
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact