In this paper we study existence of ground state solution to the following problem (−∆)αu = g(u) in RN, u ∈ Hα(RN) where (−∆)α is the fractional Laplacian, α ∈ (0,1). We treat both cases N ≥ 2 and N = 1 with α = 1/2. The function g is a general nonlinearity of Berestycki-Lions type which is allowed to have critical growth: polynomial in case N ≥ 2, exponential if N = 1.

Ground state solutions for fractional scalar field equations under a general critical nonlinearity

Siciliano, Gaetano
2016-01-01

Abstract

In this paper we study existence of ground state solution to the following problem (−∆)αu = g(u) in RN, u ∈ Hα(RN) where (−∆)α is the fractional Laplacian, α ∈ (0,1). We treat both cases N ≥ 2 and N = 1 with α = 1/2. The function g is a general nonlinearity of Berestycki-Lions type which is allowed to have critical growth: polynomial in case N ≥ 2, exponential if N = 1.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/473801
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact