We prove an implicit function theorem for functions on infinite-dimensional Banach manifolds, invariant under the (local) action of a finite-dimensional Lie group. Motivated by some geometric variational problems, we consider group actions that are not necessarily differentiable everywhere, but only on some dense subset. Applications are discussed in the context of harmonic maps, closed (pseudo-) Riemannian geodesics and constant mean curvature hypersurfaces.

On the Equivariant Implicit Function Theorem with Low Regularity and Applications to Geometric Variational Problems

Siciliano G.
2015-01-01

Abstract

We prove an implicit function theorem for functions on infinite-dimensional Banach manifolds, invariant under the (local) action of a finite-dimensional Lie group. Motivated by some geometric variational problems, we consider group actions that are not necessarily differentiable everywhere, but only on some dense subset. Applications are discussed in the context of harmonic maps, closed (pseudo-) Riemannian geodesics and constant mean curvature hypersurfaces.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/473793
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact