In this paper we consider the following Schrödinger–Poisson system in the whole R3, {−Δu+u+λϕu=f(u) in R3,−Δϕ=u2 in R3, where λ>0 and the nonlinearity f is “asymptotically cubic” at infinity. This implies that the nonlocal term ϕu and the nonlinear term f(u) are, in some sense, in a strict competition. We show that the system admits a least energy sign-changing and radial solution obtained by minimizing the energy functional on the so-called nodal Nehari set.

Least energy radial sign-changing solution for the Schrödinger–Poisson system in R3 under an asymptotically cubic nonlinearity

Siciliano G.
2019-01-01

Abstract

In this paper we consider the following Schrödinger–Poisson system in the whole R3, {−Δu+u+λϕu=f(u) in R3,−Δϕ=u2 in R3, where λ>0 and the nonlinearity f is “asymptotically cubic” at infinity. This implies that the nonlocal term ϕu and the nonlinear term f(u) are, in some sense, in a strict competition. We show that the system admits a least energy sign-changing and radial solution obtained by minimizing the energy functional on the so-called nodal Nehari set.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/473792
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact