Novel nanostructured platforms based on Pencil Graphite Electrodes (PGEs), modified with pyrene carboxylic acid (PCA) functionalized Reduced Graphene Oxide (rGO), and then decorated by chronoamperometry electrodeposition of MoS2 nanoroses (NRs) (MoS(2)NRs/PCA-rGO/PGEs) were manufactured for the electrocatalytic detection of hydrazine (N2H4) and 4-nitrophenol, pollutants highly hazardous for environment and human health. The surface morphology and chemistry of the MoS(2)NRs/PCA-rGO/PGEs were characterized by scanning electron microscopy (SEM), Raman, and X-ray photoelectron spectroscopy (XPS), assessing the coating of the PCA-rGO/PGEs by dense multilayers of NRs. N2H4 and 4-nitrophenol have been monitored by Differential Pulse Voltammetry (DPV), and the MoS(2)NRs/PCA-rGO/PGEs electroanalytical properties have been compared to the PGEs, as neat and modified by PCA-rGO. The MoS(2)NRs/PCA-rGO/PGEs demonstrated a higher electrochemical and electrocatalytic activity, due to their high surface area and conductivity, and very fast heterogeneous electron transfer kinetics at the interphase with the electrolyte. LODs lower than the U.S. EPA recommended concentration values in drinking water, namely 9.3 nM and 13.3 nM, were estimated for N2H4 and 4-nitrophenol, respectively and the MoS(2)NRs/PCA-rGO/PGEs showed good repeatability, reproducibility, storage stability, and selectivity. The effectiveness of the nanoplatforms for monitoring N2H4 and 4-nitrophenol in tap, river, and wastewater was addressed.

Pencil Graphite Electrocatalytic Sensors Modified by Pyrene Coated Reduced Graphene Oxide Decorated with Molybdenum Disulfide Nanoroses for Hydrazine and 4-Nitrophenol Detection in Real Water Samples

Mandriota, Giacomo;Curri, Maria;Ingrosso, Chiara;
2023-01-01

Abstract

Novel nanostructured platforms based on Pencil Graphite Electrodes (PGEs), modified with pyrene carboxylic acid (PCA) functionalized Reduced Graphene Oxide (rGO), and then decorated by chronoamperometry electrodeposition of MoS2 nanoroses (NRs) (MoS(2)NRs/PCA-rGO/PGEs) were manufactured for the electrocatalytic detection of hydrazine (N2H4) and 4-nitrophenol, pollutants highly hazardous for environment and human health. The surface morphology and chemistry of the MoS(2)NRs/PCA-rGO/PGEs were characterized by scanning electron microscopy (SEM), Raman, and X-ray photoelectron spectroscopy (XPS), assessing the coating of the PCA-rGO/PGEs by dense multilayers of NRs. N2H4 and 4-nitrophenol have been monitored by Differential Pulse Voltammetry (DPV), and the MoS(2)NRs/PCA-rGO/PGEs electroanalytical properties have been compared to the PGEs, as neat and modified by PCA-rGO. The MoS(2)NRs/PCA-rGO/PGEs demonstrated a higher electrochemical and electrocatalytic activity, due to their high surface area and conductivity, and very fast heterogeneous electron transfer kinetics at the interphase with the electrolyte. LODs lower than the U.S. EPA recommended concentration values in drinking water, namely 9.3 nM and 13.3 nM, were estimated for N2H4 and 4-nitrophenol, respectively and the MoS(2)NRs/PCA-rGO/PGEs showed good repeatability, reproducibility, storage stability, and selectivity. The effectiveness of the nanoplatforms for monitoring N2H4 and 4-nitrophenol in tap, river, and wastewater was addressed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/472701
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact