Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
Neuro computational models represent a powerful tool for bridging
the gap between functions of the neural circuits and observable
behaviors [1]. Once the model has been built, its output is compared
with the observations either to validate the model itself or to propose
new hypotheses. This approach has led to building a multi-scale
model of the sensorimotor system from muscles, proprioceptors to
skeletal joints, spinal regulating centers and central control circuits
[2–6].
In this framework, we propose a neural network architecture to
simulate the selection of actions performed by the motor cortex in
response to a sensory input during a reward-based movement learning.
The network has as many input nodes as the number of different
stimuli, each node being a combination of the sensory inputs, and as
many output nodes as the number of different actions that can be
performed, each node being a combination of the motor commands.
The network is fully connected, so that each stimulus concurs to the
selection of each action and each action is selected concurrently by
all the stimuli. The weights are updated by taking into account both
the expected reward and the actual reward, as suggested in [7]. By
adopting this architecture, the percept is represented by a combination
of sensory inputs, while the action is represented by a combination
of motor commands. Thus, it reproduces faithfully the condition
of experiments of motor learning when a set of sensory inputs, such
as semantically neutral visual stimuli, are presented to the subject
whose response is merely a motor action, such as pushing a button.
Under such conditions, it then becomes possible to fit the data provided
by the experiments with the model to both estimate the validity
of the model and to infer the role of the parameter on behavioral
traits.
The simulations were compared to the behaviors of human subjects
while learning which out of two buttons to press in response to a collection
of visual stimuli containing edges and geometric shapes in a
reward based setting. The results showed that the behavior of the
complete system is the one expected under the hypothesis that the
reward acts by modulating the action selection triggered by the input
stimuli during motor learning. Moreover, differently from most literature
models, the learning rate varies with the complexity of the task,
i.e. the number of input stimuli. It can be argued that the decrease in
learning rate seen in humans learning large set of stimuli could be due
to an attenuation of memory traces in real synapses over time. In our
future investigations, we will work to improve the model by adding
such an effect in our network.
26th Annual Computational Neuroscience Meeting ({CNS}{\ast}2017): Part 3
Adam J. H. Newton;Alexandra H. Seidenstein;Robert A. McDougal;Alberto P('(e))rez-Cervera;Gemma Huguet;Tere M-Seara;Caroline Haimerl;David Angulo-Garcia;Alessandro Torcini;Rosa Cossart;Arnaud Malvache;Kaoutar Skiker;Mounir Maouene;Gianmarco Ragognetti;Letizia Lorusso;Andrea Viggiano;Angelo Marcelli;Rosa Senatore;Antonio Parziale;S. Stramaglia;M. Pellicoro;L. Angelini;E. Amico;H. Aerts;J. Cort('(e))s;S. Laureys;D. Marinazzo;S. Stramaglia;I. Bassez;L. Faes;Hannes Almgren;Adeel Razi;Frederik Van de Steen;Ruth Krebs;Hannelore Aerts;Lida Kanari;Pawel Dlotko;Martina Scolamiero;Ran Levi;Julian Shillcock;Christiaan P. J. de Kock;Kathryn Hess;Henry Markram;Cheng Ly;Gary Marsat;Tom Gillespie;Malin Sandström;Mathew Abrams;Jeffrey S. Grethe;Maryann Martone;Robin De Gernier;Sergio Solinas;Christian Rössert;Marc Haelterman;Serge Massar;Valentina Pasquale;Vito Paolo Pastore;Sergio Martinoia;Paolo Massobrio;Cristiano Capone;N('(u))ria Tort-Colet;Maria V. Sanchez-Vives;Maurizio Mattia;Ali Almasi;Shaun L. Cloherty;David B. Grayden;Yan T. Wong;Michael R. Ibbotson;Hamish Meffin;Luke Y. Prince;Krasimira Tsaneva-Atanasova;Jack R. Mellor;Alberto Mazzoni;Manuela Rosa;Jacopo Carpaneto;Luigi M. Romito;Alberto Priori;Silvestro Micera;Rosanna Migliore;Carmen Alina Lupascu;Francesco Franchina;Luca Leonardo Bologna;Armando Romani;S('(a))ra Saray;Werner Van Geit;Szabolcs K('(a))li;Alex Thomson;Audrey Mercer;Sigrun Lange;Joanne Falck;Eilif Muller;Felix Schürmann;Dmitrii Todorov;Robert Capps;William Barnett;Yaroslav Molkov;Federico Devalle;Diego Paz('(o));Ernest Montbri('(o));Gabriela Mochol;Habiba Azab;Benjamin Y. Hayden;Rub('(e))n Moreno-Bote;Pragathi Priyadharsini Balasubramani;Srinivasa V. Chakravarthy;Vignayanandam R. Muddapu;Medorian D. Gheorghiu;Bartul Mimica;Jonathan Withlock;Raul C. Mureșan;Jennifer L. Zick;Kelsey Schultz;Rachael K. Blackman;Matthew V. Chafee;Theoden I. Netoff;Nicholas Roberts;Vivek Nagaraj;Andrew Lamperski;Theoden I. Netoff;Logan L. Grado;Matthew D. Johnson;David P. Darrow;Davide Lonardoni;Hayder Amin;Stefano Di Marco;Alessandro Maccione;Luca Berdondini;Thierry Nieus;Marcel Stimberg;Dan F. M. Goodman;Thomas Nowotny;Veronika Koren;Valentin Dragoi;Klaus Obermayer;Samy Castro;Mariano Fernandez;Wael El-Deredy;Kesheng Xu;Jean Paul Maidana;Patricio Orio;Weiliang Chen;Iain Hepburn;Francesco Casalegno;Adrien Devresse;Aleksandr Ovcharenko;Fernando Pereira;Fabien Delalondre;Erik De Schutter;Peter Bratby;Andrew R. Gallimore;Guido Klingbeil;Criseida Zamora;Yunliang Zang;Patrick Crotty;Eric Palmerduca;Alberto Antonietti;Claudia Casellato;Csaba Erö;Egidio D'Angelo;Marc-Oliver Gewaltig;Alessandra Pedrocchi;Ilja Bytschok;Dominik Dold;Johannes Schemmel;Karlheinz Meier;Mihai A. Petrovici;Hui-An Shen;Simone Carlo Surace;Jean-Pascal Pfister;Baptiste Lefebvre;Olivier Marre;Pierre Yger;Athanasia Papoutsi;Jiyoung Park;Ryan Ash;Stelios Smirnakis;Panayiota Poirazi;Richard A. Felix;Alexander G. Dimitrov;Christine Portfors;Silvia Daun;Tibor I. Toth;Joanna J(\k(e))drzejewska-Szmek;Nadine Kabbani;Kim T. Blackwel;Bahar Moezzi;Natalie Schaworonkow;Lukas Plogmacher;Mitchell R. Goldsworthy;Brenton Hordacre;Mark D. McDonnell;Nicolangelo Iannella;Michael C. Ridding;Jochen Triesch;Reinoud Maex;Karen Safaryan;Volker Steuber;Rongxiang Tang;Yi-Yuan Tang;Darya V. Verveyko;Alexey R. Brazhe;Andrey Yu Verisokin;Dmitry E. Postnov;Cengiz Günay;Gabriella Panuccio;Michele Giugliano;Astrid A. Prinz;Pablo Varona;Mikhail I. Rabinovich;Jack Denham;Thomas Ranner;Netta Cohen;Maria Reva;Nelson Rebola;Tekla Kirizs;Zoltan Nusser;David DiGregorio;Eirini Mavritsaki;Panos Rentzelas;Nikul H. Ukani;Adam Tomkins;Chung-Heng Yeh;Wesley Bruning;Allison L. Fenichel;Yiyin Zhou;Yu-Chi Huang;Dorian Florescu;Carlos Luna Ortiz;Paul Richmond;Chung-Chuan Lo;Daniel Coca;Ann-Shyn Chiang;Aurel A. Lazar;Bahar Moezzi;Jennifer L. Creaser;Congping Lin;Peter Ashwin;Jonathan T. Brown;Thomas Ridler;Daniel Levenstein;Brendon O. Watson;György Buzs('(a))ki;John Rinzel;Rodica Curtu;Anh Nguyen;Sahand Assadzadeh;Peter A. Robinson;Paula Sanz-Leon;Caroline G. Forlim;L('(\i))rio O. B. de Almeida;Reynaldo D. Pinto;Francisco B. Rodr('(\i))guez ('(A))ngel Lareo;Caroline Garcia Forlim;Francisco B. Rodr('(\i))guez;Aaron Montero;Thiago Mosqueiro;Ramon Huerta;Francisco B. Rodriguez;Vinicio Changoluisa;Francisco B. Rodriguez;Vin('(\i))cius L. Cordeiro;C('(e))sar C. Ceballos;Nilton L. Kamiji;Antonio C. Roque;William W. Lytton;Andrew Knox;Joshua J. C. Rosenthal;Silvia Daun;Svitlana Popovych;Liqing Liu;Bin A. Wang;Tibor I. T('(o))th;Christian Grefkes;Gereon R. Fink;Nils Rosjat;Abraham Perez-Trujillo;Andres Espinal;Marco A. Sotelo-Figueroa;Ivan Cruz-Aceves;Horacio Rostro-Gonzalez;Martin Zapotocky;Martina Hoskovcov('(a));Jana Kopeck('(a));Olga Ulmanov('(a));Ev( (z))en R( (u))( (z))i( (c))ka;Matthias Gärtner;Sevil Duvarci;Jochen Roeper;Gaby Schneider;Stefan Albert;Katharina Schmack;Michiel Remme;Susanne Schreiber;Michele Migliore;Carmen A. Lupascu;Luca L. Bologna;Stefano M. Antonel;Jean-Denis Courcol;Felix Schürmann;Sami Utku (\c(C))elikok;Eva M. Navarro-L('(o))pez;Neslihan Serap (\c(S))engör;Rahmi Elibol;Neslihan Serap Sengor;Mustafa Yasir Özdemir;Tianyi Li;Angelo Arleo;Denis Sheynikhovich;Akihiro Nakamura;Masanori Shimono;Youngjo Song;Sol Park;Ilhwan Choi;Jaeseung Jeong;Hee-sup Shin;Sadra Sadeh;Padraig Gleeson;R. Angus Silver;Alexandra Pierri Chatzikalymniou;Frances K. Skinner;Lazaro M. Sanchez-Rodriguez;Roberto C. Sotero;Loreen Hertäg;Owen Mackwood;Henning Sprekeler;Steffen Puhlmann;Simon N. Weber;David Higgins;Laura B. Naumann;Simon N. Weber;Ramakrisnan Iyer;Stefan Mihalas;Valentina Ticcinelli;Tomislav Stankovski;Peter V. E. McClintock;Aneta Stefanovska;Predrag Janji('(c));Dimitar Solev;Gerald Seifert;Ljup( (c))o Kocarev;Christian Steinhäuser;Mehrdad Salmasi;Stefan Glasauer;Martin Stemmler;Danke Zhang;Chi Zhang;Armen Stepanyants;Julia Goncharenko;Lieke Kros;Neil Davey;Chris de Zeeuw;Freek Hoebeek;Ankur Sinha;Roderick Adams;Michael Schmuker;Maria Psarrou;Maria Schilstra;Benjamin Torben-Nielsen;Christoph Metzner;Achim Schweikard;Tuomo Mäki-Marttunen;Bartosz Zurowski;Daniele Marinazzo;Luca Faes;Sebastiano Stramaglia;Henry O. C. Jordan;Simon M. Stringer;El(\. (z))bieta Gajewska-Dendek;Piotr Suffczy('(n))ski;Nicoladie Tam;George Zouridakis;Luca Pollonini;Yi-Yuan Tang;Mojtaba Madadi Asl;Alireza Valizadeh;Peter A. Tass;Andreas Nold;Wei Fan;Sara Konrad;Heiko Endle;Johannes Vogt;Tatjana Tchumatchenko;Juliane Herpich;Christian Tetzlaff;Jannik Luboeinski;Timo Nachstedt;Manuel Ciba;Andreas Bahmer;Christiane Thielemann;Eric S. Kuebler;Joseph S. Tauskela;Jean-Philippe Thivierge;Rembrandt Bakker;Mar('(\i))a Garc('(\i))a-Amado;Marian Evangelio;Francisco Clasc('(a));Paul Tiesinga;Christopher L. Buckley;Taro Toyoizumi;Alexis M. Dubreuil;R('(e))mi Monasson;Alessandro Treves;Davide Spalla;Sophie Rosay;Florence I. Kleberg;Willy Wong;Bruno de Oliveira Floriano;Toshihiko Matsuo;Tetsuya Uchida;Domenica Dibenedetto;K(\^(a))mil Uluda(\u(g));Abdorreza Goodarzinick;Maximilian Schmidt;Claus C. Hilgetag;Markus Diesmann;Sacha J. van Albada;Michael Fauth;Mark van Rossum;Manuel Reyes-S('(a))nchez;Rodrigo Amaducci;Carlos Mu(\~(n))iz;Pablo Varona;Irene Elices;David Arroyo;Rafael Levi;Ben Cohen;Carson Chow;Shashaank Vattikuti;Elena Bertolotti;Raffaella Burioni;Matteo di Volo;Alessandro Vezzani;Bayar Menzat;Tim P. Vogels;Nobuhiko Wagatsuma;Susmita Saha;Reena Kapoor;Robert Kerr;John Wagner;Luis C. Garcia del Molino;Guangyu Robert Yang;Jorge F. Mejias;Xiao-Jing Wang;Hanbing Song;Joseph Goodliffe;Jennifer Luebke;Christina M. Weaver;John Thomas;Nishant Sinha;Nikhita Shaju;Tomasz Maszczyk;Jing Jin;Sydney S. Cash;Justin Dauwels;M. Brandon Westover;Maryam Karimian;Michelle Moerel;Peter De Weerd;Thomas Burwick;Ronald L. Westra;Romesh Abeysuriya;Jonathan Hadida;Stamatios Sotiropoulos;Saad Jbabdi;Mark Woolrich;Chama Bensmail;Borys Wrobel;Xiaolong Zhou;Zilong Ji;Xiao Liu;Yan Xia;Si Wu;Xiao Wang;Mingsha Zhang;Si Wu;Netanel Ofer;Orit Shefi;Gur Yaari;Ted Carnevale;Amit Majumdar;Subhashini Sivagnanam;Kenneth Yoshimoto;Elena Y. Smirnova;Dmitry V. Amakhin;Sergey L. Malkin;Aleksey V. Zaitsev;Anton V. Chizhov;Margarita Zaleshina;Alexander Zaleshin;Victor J. Barranca;George Zhu;Quinton M. Skilling;Daniel Maruyama;Nicolette Ognjanovski;Sara J. Aton;Michal Zochowski;Jiaxing Wu;Sara Aton;Scott Rich;Victoria Booth;Maral Budak;Salvador Dura-Bernal;Samuel A. Neymotin;Benjamin A. Suter;Gordon M. G. Shepherd;Melvin A. Felton;Alfred B. Yu;David L. Boothe;Kelvin S. Oie;Piotr J. Franaszczuk;Sergey A. Shuvaev;Batuhan Ba(\c(s))erdem;Anthony Zador;Alexei A. Koulakov;V('(\i))ctor J. L('(o))pez-Madrona;Ernesto Pereda;Claudio R. Mirasso;Santiago Canals;Stefano Masoli;Udaya B. Rongala;Alberto Mazzoni;Anton Spanne;Henrik Jorntell;Calogero M. Oddo;Alexander V. Vartanov;Anastasia K. Neklyudova;Stanislav A. Kozlovskiy;Andrey A. Kiselnikov;Julia A. Marakshina;Maria Tele('(n))czuk;Bartosz Tele('(n))czuk;Alain Destexhe;Paula T. Kuokkanen;Anna Kraemer;Thomas McColgan;Catherine E. Carr;Richard Kempter
2017-01-01
Abstract
Neuro computational models represent a powerful tool for bridging
the gap between functions of the neural circuits and observable
behaviors [1]. Once the model has been built, its output is compared
with the observations either to validate the model itself or to propose
new hypotheses. This approach has led to building a multi-scale
model of the sensorimotor system from muscles, proprioceptors to
skeletal joints, spinal regulating centers and central control circuits
[2–6].
In this framework, we propose a neural network architecture to
simulate the selection of actions performed by the motor cortex in
response to a sensory input during a reward-based movement learning.
The network has as many input nodes as the number of different
stimuli, each node being a combination of the sensory inputs, and as
many output nodes as the number of different actions that can be
performed, each node being a combination of the motor commands.
The network is fully connected, so that each stimulus concurs to the
selection of each action and each action is selected concurrently by
all the stimuli. The weights are updated by taking into account both
the expected reward and the actual reward, as suggested in [7]. By
adopting this architecture, the percept is represented by a combination
of sensory inputs, while the action is represented by a combination
of motor commands. Thus, it reproduces faithfully the condition
of experiments of motor learning when a set of sensory inputs, such
as semantically neutral visual stimuli, are presented to the subject
whose response is merely a motor action, such as pushing a button.
Under such conditions, it then becomes possible to fit the data provided
by the experiments with the model to both estimate the validity
of the model and to infer the role of the parameter on behavioral
traits.
The simulations were compared to the behaviors of human subjects
while learning which out of two buttons to press in response to a collection
of visual stimuli containing edges and geometric shapes in a
reward based setting. The results showed that the behavior of the
complete system is the one expected under the hypothesis that the
reward acts by modulating the action selection triggered by the input
stimuli during motor learning. Moreover, differently from most literature
models, the learning rate varies with the complexity of the task,
i.e. the number of input stimuli. It can be argued that the decrease in
learning rate seen in humans learning large set of stimuli could be due
to an attenuation of memory traces in real synapses over time. In our
future investigations, we will work to improve the model by adding
such an effect in our network.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/471321
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Citazioni
ND
ND
0
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.