In this paper we report on a covalent grafting of boron nitride nanotubes with human transferrin. After silanization of the nanotube wall, transferrin was linked to the nanotubes through carbamide binding. The obtained transferrin-conjugated boron nitride nanotubes (tf-BNNTs) resulted stable in aqueous environments and were characterized in terms of scanning electron microscopy, transmission electron microscopy, size distribution analysis and Z-potential measurement. Effective covalent grafting of transferrin was demonstrated by Fourier transform infrared spectroscopy and UV-Vis spectrophotometry. The obtained tf-BNNTs were thereafter tested on human umbilical vein endothelial cells (HUVECs); in particular cellular up-take was investigated by confocal, scanning and transmission electron microscopy, demonstrating the key role of transferrin during the internalization process. Here reported for the first time in the literature, the covalent BNNT functionalization with a targeting ligand represents a fundamental step towards BNNT exploitation as smart and selective nanocarriers in a number of nanomedicine applications. © 2012 Elsevier B.V. All rights reserved.

Transferrin-conjugated boron nitride nanotubes: Protein grafting, characterization, and interaction with human endothelial cells

Genchi G. G.;
2012-01-01

Abstract

In this paper we report on a covalent grafting of boron nitride nanotubes with human transferrin. After silanization of the nanotube wall, transferrin was linked to the nanotubes through carbamide binding. The obtained transferrin-conjugated boron nitride nanotubes (tf-BNNTs) resulted stable in aqueous environments and were characterized in terms of scanning electron microscopy, transmission electron microscopy, size distribution analysis and Z-potential measurement. Effective covalent grafting of transferrin was demonstrated by Fourier transform infrared spectroscopy and UV-Vis spectrophotometry. The obtained tf-BNNTs were thereafter tested on human umbilical vein endothelial cells (HUVECs); in particular cellular up-take was investigated by confocal, scanning and transmission electron microscopy, demonstrating the key role of transferrin during the internalization process. Here reported for the first time in the literature, the covalent BNNT functionalization with a targeting ligand represents a fundamental step towards BNNT exploitation as smart and selective nanocarriers in a number of nanomedicine applications. © 2012 Elsevier B.V. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/471080
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 46
  • ???jsp.display-item.citation.isi??? ND
social impact