The analysis of the residual hazard existing after the emergency phases generated by the activation or reactivation of landslides is rarely taken into account in a proper manner. However, the assessment of landslide post-failure evolution should represent a key factor to control potential landslide reactivations and prevent new landslide-induced damages. This paper presents the results of a long-term field monitoring activity performed in the years after the emergency phase of the Montaguto (Italy) earthflow reactivation occurred in 2010 as well as the results of 2-D and 3-D numerical analyses aimed at interpreting the post-emergency landslide behaviour. The results of the numerical simulations, which agree well with the in situ monitoring data, allow to define a conceptual model of the earthflow behaviour that is related to the pore water pressure variations resulting from the drained or undrained processes occurring in the landslide body. The study proposed confirms a general reduction of the landslide activity, as well as allows to detect the factors that control the residual activity existing in a specific area of the landslide and to infer possible critical scenarios for landslide reactivations.

Assessment of post-failure evolution of a large earthflow through field monitoring and numerical modelling

Lollino P.;
2020-01-01

Abstract

The analysis of the residual hazard existing after the emergency phases generated by the activation or reactivation of landslides is rarely taken into account in a proper manner. However, the assessment of landslide post-failure evolution should represent a key factor to control potential landslide reactivations and prevent new landslide-induced damages. This paper presents the results of a long-term field monitoring activity performed in the years after the emergency phase of the Montaguto (Italy) earthflow reactivation occurred in 2010 as well as the results of 2-D and 3-D numerical analyses aimed at interpreting the post-emergency landslide behaviour. The results of the numerical simulations, which agree well with the in situ monitoring data, allow to define a conceptual model of the earthflow behaviour that is related to the pore water pressure variations resulting from the drained or undrained processes occurring in the landslide body. The study proposed confirms a general reduction of the landslide activity, as well as allows to detect the factors that control the residual activity existing in a specific area of the landslide and to infer possible critical scenarios for landslide reactivations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/469021
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact