Sterile neutrinos with masses up to $\mathcal{O} (100)$ MeV can be copiously produced in a supernova (SN) core, through the mixing with active neutrinos. In this regard the SN 1987A detection of neutrino events has been used to put constraints on active-sterile neutrino mixing, exploiting the well-known SN cooling argument. We refine the calculation of this limit including neutral current interactions with nucleons, that constitute the dominant channel for sterile neutrino production. We also include, for the first time, the charged current interactions between sterile neutrinos and muons, relevant for the production of sterile neutrinos mixed with muon neutrinos in the SN core. Using the recent modified luminosity criterion, we extend the bounds to the case where sterile states are trapped in the stellar core. Additionally, we study the decays of heavy sterile neutrinos, affecting the SN explosion energy and possibly producing a gamma-ray signal. We also illustrate the complementarity of our new bounds with cosmological bounds and laboratory searches.

Comprehensive constraints on heavy sterile neutrinos from core-collapse supernovae

Pierluca Carenza;Giuseppe Lucente;Alessandro Mirizzi;
2023-01-01

Abstract

Sterile neutrinos with masses up to $\mathcal{O} (100)$ MeV can be copiously produced in a supernova (SN) core, through the mixing with active neutrinos. In this regard the SN 1987A detection of neutrino events has been used to put constraints on active-sterile neutrino mixing, exploiting the well-known SN cooling argument. We refine the calculation of this limit including neutral current interactions with nucleons, that constitute the dominant channel for sterile neutrino production. We also include, for the first time, the charged current interactions between sterile neutrinos and muons, relevant for the production of sterile neutrinos mixed with muon neutrinos in the SN core. Using the recent modified luminosity criterion, we extend the bounds to the case where sterile states are trapped in the stellar core. Additionally, we study the decays of heavy sterile neutrinos, affecting the SN explosion energy and possibly producing a gamma-ray signal. We also illustrate the complementarity of our new bounds with cosmological bounds and laboratory searches.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/468386
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact