The aim of the paper is to develop some representation formulae for strongly continuous operator semigroups on Banach spaces, in terms of limits of integrated means with respect to some given family of probability Borel measures and other parameters. The cases where these limits hold true pointwise or uniformly on compact subintervals are discussed separately. In order to face them different methods have been required: the former case has been studied by using purely functional-analytic methods, the latter one by involving methods arising from Approximation Theory. The paper also contains some estimates of the rate of convergence in terms of the rectified modulus of continuity and the second modulus of continuity. In a final section some illustrative examples and applications are provided.

On some representation formulae for operator semigroups in terms of integrated means

Cappelletti Montano M.;Leonessa V.
2024-01-01

Abstract

The aim of the paper is to develop some representation formulae for strongly continuous operator semigroups on Banach spaces, in terms of limits of integrated means with respect to some given family of probability Borel measures and other parameters. The cases where these limits hold true pointwise or uniformly on compact subintervals are discussed separately. In order to face them different methods have been required: the former case has been studied by using purely functional-analytic methods, the latter one by involving methods arising from Approximation Theory. The paper also contains some estimates of the rate of convergence in terms of the rectified modulus of continuity and the second modulus of continuity. In a final section some illustrative examples and applications are provided.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/467625
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact