We review the basis of a semi-empirical model of carbonate decomposition developed by the authors, shortly discussing numerous previous theories. Then, the model is applied to the modeling of a scenario of matter transport from space to the surface of planets embedded into sub-mm mineral grains, with the correction of the so-called additional enthalpy, coming from the experiments. Having magnesium and calcium carbonates as mineral phases and the atmosphere of Earth and Mars as environments, the chemical-physical history of grains entering at different angles and speeds is discussed. The results are compared with those obtained previously and new evaluations of the most promising scenarios are formulated.

A semi-empirical model for thermal decomposition of carbonates and its application to astrobiology

Gaia Micca Longo;Savino Longo
2024-01-01

Abstract

We review the basis of a semi-empirical model of carbonate decomposition developed by the authors, shortly discussing numerous previous theories. Then, the model is applied to the modeling of a scenario of matter transport from space to the surface of planets embedded into sub-mm mineral grains, with the correction of the so-called additional enthalpy, coming from the experiments. Having magnesium and calcium carbonates as mineral phases and the atmosphere of Earth and Mars as environments, the chemical-physical history of grains entering at different angles and speeds is discussed. The results are compared with those obtained previously and new evaluations of the most promising scenarios are formulated.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/467191
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact