Production cross sections of [Formula presented], [Formula presented], and [Formula presented] states decaying into [Formula presented] in proton-lead (pPb) collisions are reported using data collected by the CMS experiment at sjavax.xml.bind.JAXBElement@3d45f225=5.02TeV. A comparison is made with corresponding cross sections obtained with pp data measured at the same collision energy and scaled by the Pb nucleus mass number. The nuclear modification factor for [Formula presented] is found to be [Formula presented]. Similar results for the excited states indicate a sequential suppression pattern, such that [Formula presented]. The suppression of all states is much less pronounced in pPb than in PbPb collisions, and independent of transverse momentum [Formula presented] and center-of-mass rapidity [Formula presented] of the individual [Formula presented] state in the studied range [Formula presented] and [Formula presented]. Models that incorporate final-state effects of bottomonia in pPb collisions are in better agreement with the data than those which only assume initial-state modifications.
Nuclear modification of Y states in pPb collisions at √SNN=5.02 TeV
Abbrescia M.;Colaleo A.;De Palma M.;My S.;Pompili A.;Radogna R.;Venditti R.;Galati G.;
2022-01-01
Abstract
Production cross sections of [Formula presented], [Formula presented], and [Formula presented] states decaying into [Formula presented] in proton-lead (pPb) collisions are reported using data collected by the CMS experiment at sjavax.xml.bind.JAXBElement@3d45f225=5.02TeV. A comparison is made with corresponding cross sections obtained with pp data measured at the same collision energy and scaled by the Pb nucleus mass number. The nuclear modification factor for [Formula presented] is found to be [Formula presented]. Similar results for the excited states indicate a sequential suppression pattern, such that [Formula presented]. The suppression of all states is much less pronounced in pPb than in PbPb collisions, and independent of transverse momentum [Formula presented] and center-of-mass rapidity [Formula presented] of the individual [Formula presented] state in the studied range [Formula presented] and [Formula presented]. Models that incorporate final-state effects of bottomonia in pPb collisions are in better agreement with the data than those which only assume initial-state modifications.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0370269322005317-main.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
1.23 MB
Formato
Adobe PDF
|
1.23 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.