In this work we prove a Baum-Bott type formula for noncompact complex manifold of the form X = X - D, where X is a complex compact manifold and D is a normal crossing divisor on X. As applications, we provide a Poincaré-Hopf type theorem and an optimal description for a smooth hypersurface D invariant by an one-dimensional foliation F on P n satisfying Sing(F) ⊂ D.

Residue formulas for logarithmic foliations and applications

MAURICIO BARROS CORREA JUNIOR
;
2019-01-01

Abstract

In this work we prove a Baum-Bott type formula for noncompact complex manifold of the form X = X - D, where X is a complex compact manifold and D is a normal crossing divisor on X. As applications, we provide a Poincaré-Hopf type theorem and an optimal description for a smooth hypersurface D invariant by an one-dimensional foliation F on P n satisfying Sing(F) ⊂ D.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/466997
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact