We prove that the tangent sheaf of a codimension-one locally free distribution splits as a sum of line bundles if and only if its singular scheme is arithmetically Cohen-Macaulay. In addition, we show that a foliation by curves is given by an intersection of generically transversal holomorphic distributions of codimension one if and only if its singular scheme is arithmetically Buchsbaum. Finally, we establish that these foliations are determined by their singular schemes, and deduce that the Hilbert scheme of certain arithmetically Buchsbaum schemes of codimension 2 is birational to a Grassmannian.

On the singular scheme of split foliations

MAURICIO BARROS CORREA JUNIOR
;
2015-01-01

Abstract

We prove that the tangent sheaf of a codimension-one locally free distribution splits as a sum of line bundles if and only if its singular scheme is arithmetically Cohen-Macaulay. In addition, we show that a foliation by curves is given by an intersection of generically transversal holomorphic distributions of codimension one if and only if its singular scheme is arithmetically Buchsbaum. Finally, we establish that these foliations are determined by their singular schemes, and deduce that the Hilbert scheme of certain arithmetically Buchsbaum schemes of codimension 2 is birational to a Grassmannian.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/466990
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact