An enhanced, sustainable, and efficient method for synthesizing tacrine, achieving a 98% yield, has been developed by replacing volatile organic compounds with more eco-friendly solvents such as deep eutectic solvent (DESs). The optimized protocol scales easily to 3 g of substrate without yield loss and extends successfully to tacrine derivatives with reduced hepatotoxicity. Particularly notable is the synthesis of novel triazole-based derivatives, yielding 90–95%, by integrating an in situ preparation of aryl azides in DESs with N-propargyl-substituted tacrine derivatives. Quantitative metrics validate the green aspects of the reported drug development processes.
A Sustainable Synthetic Approach to Tacrine and Cholinesterase Inhibitors in Deep Eutectic Solvents under Aerobic Conditions
Luciana Cicco
;Filippo Maria Perna;Vito Capriati
;Paola Vitale
2024-01-01
Abstract
An enhanced, sustainable, and efficient method for synthesizing tacrine, achieving a 98% yield, has been developed by replacing volatile organic compounds with more eco-friendly solvents such as deep eutectic solvent (DESs). The optimized protocol scales easily to 3 g of substrate without yield loss and extends successfully to tacrine derivatives with reduced hepatotoxicity. Particularly notable is the synthesis of novel triazole-based derivatives, yielding 90–95%, by integrating an in situ preparation of aryl azides in DESs with N-propargyl-substituted tacrine derivatives. Quantitative metrics validate the green aspects of the reported drug development processes.File | Dimensione | Formato | |
---|---|---|---|
molecules-29-01399.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
1.47 MB
Formato
Adobe PDF
|
1.47 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.