An enhanced, sustainable, and efficient method for synthesizing tacrine, achieving a 98% yield, has been developed by replacing volatile organic compounds with more eco-friendly solvents such as deep eutectic solvent (DESs). The optimized protocol scales easily to 3 g of substrate without yield loss and extends successfully to tacrine derivatives with reduced hepatotoxicity. Particularly notable is the synthesis of novel triazole-based derivatives, yielding 90–95%, by integrating an in situ preparation of aryl azides in DESs with N-propargyl-substituted tacrine derivatives. Quantitative metrics validate the green aspects of the reported drug development processes.

A Sustainable Synthetic Approach to Tacrine and Cholinesterase Inhibitors in Deep Eutectic Solvents under Aerobic Conditions

Luciana Cicco
;
Filippo Maria Perna;Vito Capriati
;
Paola Vitale
2024-01-01

Abstract

An enhanced, sustainable, and efficient method for synthesizing tacrine, achieving a 98% yield, has been developed by replacing volatile organic compounds with more eco-friendly solvents such as deep eutectic solvent (DESs). The optimized protocol scales easily to 3 g of substrate without yield loss and extends successfully to tacrine derivatives with reduced hepatotoxicity. Particularly notable is the synthesis of novel triazole-based derivatives, yielding 90–95%, by integrating an in situ preparation of aryl azides in DESs with N-propargyl-substituted tacrine derivatives. Quantitative metrics validate the green aspects of the reported drug development processes.
File in questo prodotto:
File Dimensione Formato  
molecules-29-01399.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.47 MB
Formato Adobe PDF
1.47 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/465480
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact