The set of states on CCR(H) is here looked at as a natural object to obtain a non-commutative version of Freedman's theorem for unitarily invariant stochastic processes. In this regard, we provide a complete description of the compact convex set of states of CCR(H) that are invariant under the action of all automorphisms induced in second quantization by unitaries of H. We prove that this set is a Bauer simplex, whose extreme states are either the canonical trace of the CCR algebra or Gaussian states with variance at least 1.

Freedman’s Theorem for Unitarily Invariant States on the CCR Algebra

Crismale V.;Del Vecchio S.;Monni T.;Rossi S.
2024-01-01

Abstract

The set of states on CCR(H) is here looked at as a natural object to obtain a non-commutative version of Freedman's theorem for unitarily invariant stochastic processes. In this regard, we provide a complete description of the compact convex set of states of CCR(H) that are invariant under the action of all automorphisms induced in second quantization by unitaries of H. We prove that this set is a Bauer simplex, whose extreme states are either the canonical trace of the CCR algebra or Gaussian states with variance at least 1.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/463480
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact