We establish critical groups estimates for the weak solutions of −Δp u =f(x,u) in Ω and u =0 on ∂Ω via Morse index, where Ωis a bounded domain, f∈C1(Ω×R) and f(x, s) >0 for all x ∈Ω, s >0 and f(x, s) =0 for all x ∈Ω, s ≤0. The proof relies on new uniform Sobolev inequalities for approximating problems. We also prove critical groups estimates when Ω is the ball or the annulus and fis a sign changing function.
Weighted Sobolev spaces and Morse estimates for quasilinear elliptic equations
Silvia Cingolani
;
2024-01-01
Abstract
We establish critical groups estimates for the weak solutions of −Δp u =f(x,u) in Ω and u =0 on ∂Ω via Morse index, where Ωis a bounded domain, f∈C1(Ω×R) and f(x, s) >0 for all x ∈Ω, s >0 and f(x, s) =0 for all x ∈Ω, s ≤0. The proof relies on new uniform Sobolev inequalities for approximating problems. We also prove critical groups estimates when Ω is the ball or the annulus and fis a sign changing function.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S002212362400034X-main.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
642.1 kB
Formato
Adobe PDF
|
642.1 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.