This work aims to extend previous research on how a trifactorial stochastic model, which we call CI R3, can be turned into a forecasting tool for energy time series. In particular, in this work, we intend to predict changes in the industrial production of electric and gas utilities. The model accounts for several stylized facts such as the mean reversion of both the process and its volatility to a short-runmean, non-normality, autocorrelation, cluster volatility and fat tails. In addition to that, we provide two theoretical results which are of particular importance in modelling and simulations. The first is the proof of existence and uniqueness of the solution to the SDEs system that describes the model. The second theoretical result is to convert, by the means of Lamperti transformations, the correlated system into an uncorrelated one. The forecasting performance is tested against an ARIMA-GARCH and a nonlinear regression model (NRM).

Modelling the industrial production of electric and gas utilities through the $$CIR^3$$ model

Michele Bufalo;Giuseppe Orlando
2024-01-01

Abstract

This work aims to extend previous research on how a trifactorial stochastic model, which we call CI R3, can be turned into a forecasting tool for energy time series. In particular, in this work, we intend to predict changes in the industrial production of electric and gas utilities. The model accounts for several stylized facts such as the mean reversion of both the process and its volatility to a short-runmean, non-normality, autocorrelation, cluster volatility and fat tails. In addition to that, we provide two theoretical results which are of particular importance in modelling and simulations. The first is the proof of existence and uniqueness of the solution to the SDEs system that describes the model. The second theoretical result is to convert, by the means of Lamperti transformations, the correlated system into an uncorrelated one. The forecasting performance is tested against an ARIMA-GARCH and a nonlinear regression model (NRM).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/459280
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact