This work presents the next paradigm shift in solar energy technology in which a novel iodide-based DES-like mixture has been first investigated as an active electrolyte solvent in dye-sensitized solar cells (DSSCs) in the absence of any co-solvent and any external iodide source. The optimization of the cell design jointly with a bespoke dye functionalized with a hydrophobic chain, properly positioned along the molecular backbone, ensures (a) one of the highest power conversion efficiencies (PCEs) up to 4% for DSSCs based on non-VOC solvents, and (b) a remarkable temporal stability of nearly 95% over a period longer than 2 months. Higher power conversion efficiency values (up to 8.0%) than those reported in the literature with traditional sensitizers and environmentally friendly electrolytes (e.g., water-based electrolytes) have been achieved under low-light illumination. These results are very promising for the realization of next-generation nature-inspired low-cost and high-performing DSSC devices for indoor and outdoor applications.DSSCs based on a DES-like mixture containing choline iodide as main component have been tested, in combination with a properly hydrophobic dye, achieving top-ranked efficiency without any other iodide source under both outdoor and indoor conditions.

Top-ranked efficiency under indoor light of DSSCs enabled by iodide-based DES-like solvent electrolyte

Andrea Francesca Quivelli;Filippo Maria Perna;Vito Capriati;Alessandro Abbotto;
2024-01-01

Abstract

This work presents the next paradigm shift in solar energy technology in which a novel iodide-based DES-like mixture has been first investigated as an active electrolyte solvent in dye-sensitized solar cells (DSSCs) in the absence of any co-solvent and any external iodide source. The optimization of the cell design jointly with a bespoke dye functionalized with a hydrophobic chain, properly positioned along the molecular backbone, ensures (a) one of the highest power conversion efficiencies (PCEs) up to 4% for DSSCs based on non-VOC solvents, and (b) a remarkable temporal stability of nearly 95% over a period longer than 2 months. Higher power conversion efficiency values (up to 8.0%) than those reported in the literature with traditional sensitizers and environmentally friendly electrolytes (e.g., water-based electrolytes) have been achieved under low-light illumination. These results are very promising for the realization of next-generation nature-inspired low-cost and high-performing DSSC devices for indoor and outdoor applications.DSSCs based on a DES-like mixture containing choline iodide as main component have been tested, in combination with a properly hydrophobic dye, achieving top-ranked efficiency without any other iodide source under both outdoor and indoor conditions.
File in questo prodotto:
File Dimensione Formato  
2024_Sustainable Energy_Fuels.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/457280
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact